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Abstract 

The brain is the body's control center, which possesses the ability to regulate thinking, 

memory, voice, and motion, and also control the function of many organs. The presence of a 

disease is one of the most complicated disorders in humans, and Electroencephalography 

(EEG) is a popular method used to make diagnosis in hospitals.  

In the diagnosis using EEG, a patient is typically attached more than 20 electrodes to the 

scalp, then recorded the electrical waves in the brain. During a typical test menu around one 

hour, a supine patient on the bed with EEG and various equipment receives various instructions 

and stimulations. EEG automatically records the brain waves, however, such events and 

specific states of brain wave (e.g. sleep and awake) are annotated manually by technicians.  

To reduce the workload of human annotators, we tried two things for automating the 

annotation. Firstly, we proposed a new approach of the non-contact capturing method of 

breathing activities using the Kinect depth sensor for automatic annotation of hyperventilation, 

which is one of the important events in EEG diagnosis. The time-series mean depth value 

between Kinect and subject’s breast are further processed by feature reduction step, then 

classified by Support Vector Machine (SVM). This approach achieved 99% accuracy in the 

classification of three breathing states including hyperventilation.  

Secondly, we proposed a method of sleep stage classification. Unlike various existing 

methods using complicated process of signal filtering, feature extraction, and feature selection, 

we used high-dimensional features calculated by Fast Fourier Transform (FFT) from single- or 

multi-channel EEG signals. In the classification of the expanded version of Sleep-EDF dataset 

with 61 recordings, our method using SVM achieved better or nearly equal performance in 

comparison with the most recently reported and state of the art method. It means that that our 

method is useful for the automatic sleep stage annotation in EEG diagnosis.  

Keywords: annotation, hyperventilation, sleep stages, classification, fast fourier transform,  

electroencephalogram 
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Chapter 1 Introduction 

1.1 Background 

The brain is the body’s control center. It regulates thinking, memory, voice, and motion. 

It controls the function of many organs. If the brain is healthy, it will function quickly and 

automatically. If the brain has problems, the effect can be catastrophic. Disease in the brain is 

one of the most complicated disorders in human. Electroencephalography (EEG) is a popular 

method to make a diagnosis of brain disease and used in hospitals. An EEG can determine brain 

activity changes that could be helpful to diagnose brain disorders. An EEG can also be useful 

for the diagnosis or treatment of sleep disorders, heart stroke, inflammation of the brain or 

encephalitis, brain damage that may be caused by a variety of causes (encephalopathy), tumor 

in brain, and brain damage from head injury.  

One of the basic physiological needs and an important part of life is an activity called 

sleeping. One-third of human lifetimes are spent on sleeping. Lack of sleeping may cause 

health problems, as well as influence mood and cognitive performance[1]. EEG records the 

activity of the brain over a period of time. The principle of EEG recording was implemented 

by comparing the electrical voltage or electrical signal from the multiple scalps located in the 

different areas of the brain. Then, with a neuron that produces a neuronal activity, the potential 

of extracellular space increases as extracellular currents originates from post-synaptic 

potentials and inhibitory post-synaptic potentials. The amplitude is higher than usual when 

more neurons operate actively simultaneously, due to the EEG measurement. The electrodes 

are usually connected to the skin, so neuronal feedback is very small since the tissues 

significantly attenuate the signal [2,3]. This occurrence appears in a EEG recording as wavy 

lines. 

EEG waveforms have several kinds of rhythms. These rhythms are remarkably useful for 

annotation of sleeping score from PSG data. In normal EEG, we differentiate these into five 

frequency bands. Table 1 shows the frequency and amplitude ranges of the EEG signal[2,4].  

 

Table 1. Frequency and amplitude range of the EEG signal 

Bands Frequencies (Hz) Amplitude (µV) 

Delta 0.5 – 3.5 20 – 100 

Theta 3.5 – 7.5 10 

Alpha 7.5 – 12 2 – 100 
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Beta 12- 30 5 – 10 

Gamma >31  - 

 

Human sleep consists of repeated stages, and the sleep stages are essential sections of 

activity during sleep. The three main stages of sleep are Awake, Non-REM (NREM) sleep, and 

Rapid Eye Movement (REM) sleep. During the NREM phase, called dreamless sleep, the 

breathing is slow, the heart rate is in a natural state, and the blood pressure is average. The 

NREM sleep will be increasing depth leading to REM sleep. Meanwhile, The REM stage most 

occurs when dreaming. At the time, the brain briefly controls the arms and legs to prevent the 

body from playing out these dreams. During the REM sleep, the eyes move quickly in different 

directions. The absence of one of these stages or the overabundance of another can lead to the 

diagnosis of numerous conditions ranging from sleep apnea, hypersomnia, insomnia, or sleep 

talking[5].  

Usually, technicians annotated the sleep stages detection manually. Hence, it was a time-

consuming process. Moreover, it was expensive and dependent on human resources. Because 

of the time-consuming, expensive, and enormous process, it is not suitable to manually 

annotate large EEG-data sets for sleep stage screening by the human expert[6]. As a result, it is 

highly needed to develop automatic sleep stage classification in order to achieve better 

accuracy.  

In addition to the usage of the PSG/EEG system, the patient is also equipped with the 

surveillance through a camera for monitoring system. EEG records the brain waves and a 

camera records a video of the patient to catch patients whose condition is deteriorating before 

their symptoms are obvious. Usually, during a typical test menu around one hour, a supine 

patient on the bed with EEG and various equipment receives various instructions and 

stimulations. The instructions are such as to open and close the eyes, breathe deeply and rapidly 

(hyperventilation) and the stimulations are to look at a flashing light or to hear the loud sound. 

In fact, such events and specific states of brain wave (e.g. drowsy) are annotated manually by 

human. To reduce the workload of human annotators, we tried to develop a system for 

automating the annotation. 

The hyperventilation constitutes a condition which starts to breathe very fast. It usually 

provokes physiological slowing of the brain rhythms and constructs a classic activation 

procedure of the EEG system. Hyperventilation is an important event in clinical 
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electroencephalography since it sometimes causes epileptic seizures. It is, however, more 

prevalent and pronounced in patients with epilepsy [7].  

During the EEG examination, start time and end time of indicated hyperventilation must 

be annotated. On the other hand, events about awake and sleep are also important. In addition 

to recognize patient's awake and sleep, it is also required to recognize stages of sleep (for 

example, non-REM and REM) since the annotation about these stages could be informative in 

the diagnosis of various sleep disorders like insomnia, hypersomnia, narcolepsy, and sleep 

apnea syndrome. Since such events in EEG examination are still annotated manually by 

experts, it is desired to develop an automatic annotation function in EEG system. 

To enable the automatic annotation of hyperventilation, we used an RGB-D camera called 

Kinect. In addition to usual RGB images, it can take infrared (IR) and depth images. 

 

1.2 Objective 

In the condition of monitoring patients in the hospital, such events and specific states of 

brain wave (e.g. drowsy) and sleep stages are annotated manually by the clinician. Moreover, 

the hyperventilation status of the patient is a critical condition that should be known 

immediately by the clinician. However, the marking of hyperventilation occurrence and sleep 

stages condition is commonly annotated manually by the clinician. Since the yielded data from 

both of the EEG signals and RGB-D camera monitoring for hyperventilation are time-series 

signals, it will be processed using the machine learning algorithm for classification to get better 

performance. So, the primary objective of this research is to develop a system for automating 

the annotation of sleep stages and hyperventilation in Electroencephalogram Examination by 

implementing machine learning on the classification system.  

 

1.3 Contribution 

Machine learning system is one of the most common tools that is usually used in 

automatic annotation by doing the classification to get the better performance. Many studies of 

automatic annotation on EEG examination by doing classification system have been explored 

intensively by researches. This research contributes to the following matters:  

1. Propose a novel approach by utilizing the feature extraction algorithm in machine 

learning method. 
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Existing research use various classification algorithms to process the time-series signal 

from the brainwaves and the time-series signal of mean depth value of ROI that yielded 

from the RGB-D camera. In this research, we found an effective approach to utilize 

fully thousands of Fast Fourier Transform (FFT) features, or also called high-

dimensional FFT features, from the feature extraction algorithm.  

2. Improve classification performance. 

We found that our approach worked to achieve better result or nearly equal performance 

of the classification from the breathing activities on hyperventilation and the 

classification of sleep stages from the EEG signals using the datasets. Moreover, we 

achieved significant improvement for all cases with the dataset we used. This result has 

shown that better performance had been achieved with the proposed method in 

classification to get the automatic annotation in the EEG examination.  

 

1.4 Thesis Organization 

This thesis consists of four chapters.  

Chapter 1 Introduces the background and the reasons for conducting the research. This 

chapter also contains objectives and contribution of this research for bioinformatics 

application. 

Chapter 2 explains that the research had been conducted on the case of clustering and 

classification of breathing activities by depth image for automatic annotation of 

hyperventilation. The depth image was yielded by calculating the mean depth value of the 

thorax area. Some steps on machine learning had been selected and executed to get better 

performance. We will also explain the classification performance evaluation.  

Chapter 3 describes the classification of brainwaves for sleep stages automatic annotation by 

high-dimensional FFT features from EEG Signals. In this chapter, we explain about three main 

steps in our experiment. The first step is Brainwaves acquisition from the EEG channel by 

obtaining the time-series signal of EEG signals. The process continues with the preprocessing 

by doing segmented Brainwaves Epochs. The next step, was continued with feature processing 

by doing feature extraction using FFT, and it will result in the high dimensional FFT features. 

Finally, we performed the classification evaluation by doing 10-fold cross-validation and SVM 

classifier to get classification performance evaluation.  
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Chapter 4 summarizes the thesis by stating a conclusion of achievements. Suggestions for 

future work are discussed in this chapter.  
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Chapter 2 Clustering and Classification of Breathing Activities by 

Depth Image for Automatic Annotation of Hyperventilation   

 

2.1 Introduction 

Breathing is a vital physiological task in living organisms including human, and one of 

critical indicators of a person’s health. There are two methods to monitor breathing rate 

activities, contact or non-contact method. For the contact method, frequently called invasive 

method, a sensing device or some parts of this is put on to the subject’s organs. For non-contact 

method, called noninvasive method, there is no direct interaction between the instruments with 

the subject [8].  

Many medical instruments can be categorized as invasive approaches such as Respiratory 

Inductance Plethysmography (RIP)[9], Thoracic Impedance [10], Impedance Pneumography 

(IP) [11], Photo plethysmography (PPG) [12], Acoustic Monitoring [13,14], Strain Gauges [15] 

and Magnetometers [16]. All of the methods are implemented to monitor human breathing 

activities. Those are state-of-the-art devices especially for breathing activities through direct 

contact.  However, these methods’ primary drawback is that they interfere with the natural 

respiration of the subject.  

The microwave-based techniques had been developed for some non-contact respiratory 

measurements [17,18]. Moreover, the optical-based techniques are refined too includes 

Structured Light Plethysmography (SLP) [19] and Optoelectronic Plethysmography (OEP) 

[20,21]. Despite the fact that there is no need to directly contact with the subject while measuring, 

these instruments tend to have the complicated procedure. 

Normal breathing occurs when the balance of breathing in oxygen and breathing out carbon 

dioxide. The hyperventilation exists if the exhaling more than inhaling; in fact, this causes a 

rapid reduction in carbon dioxide in the body. A hyperventilation incident is a critical event in 

clinical electroencephalography because it induces epileptic seizures. The noninvasive method 

based approach can be implemented to monitor this event by using camera monitoring. In this 

research, we proposed a method to measure the morphological changes of the subject’s chest 

area in real-time using RGB-D camera namely Kinect V2, which is a commercial depth camera 

in order to monitor breathing activities. Therefore, we can estimate the activities of the subject 

based on the monitoring of the subject’s breathing without contact directly to the subject.  
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Figure 1. Kinect V2[22] 

 

Microsoft had released two series of Kinect; they were Kinect version 1 (v1) and Kinect 

version 2 (2) [22]. Kinect v2 applied an active sensor called Time-of-Flight method to measure 

the distance of a surface by calculating the round-trip time of a pulse of light [23]. In other hand, 

Kinect v1 does not have this ability to do that. As a result, the depth images resulted from 

Kinect v2 have better quality compared the other one. Figure 1 shows Kinect v2. The mean 

depth value from Kinect was reconstructed in time series signal. This signal is used to classify 

breathing activities by building a machine learning algorithm using SVM. The block diagram 

of this study is shown in Figure 2. The data input was taken with the RGB-D camera called 

Kinect Version 2 from Microsoft.  
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Figure 2. Block diagram of this study 

 

2.2 Materials and Methods 

This research had many steps as mentioned previous and conducted on four different 

subjects of the human. After acquiring the data using Kinect, the RGB-D camera, then the time 

series waveforms were processed into the features. The feature processing, clustering, 

classification, and evaluation steps were conducted on R programming. 
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2.2.1 Acquisition of Depth Image and Capturing Mean Depth Value 

In this step, Kinect was utilized to capture the human breathing activities. Kinect can 

capture depth images at the resolution of 640 x 480 pixels a maximum of 30 fps using IR 

Receiver. Furthermore, it also can capture color images using an infrared laser emitter 

combined with a monochrome sensor. The experiment was conducted indoor, and the subjects 

were asked to sit at a distance of the depth camera (Figure 3). In this research, we recorded four 

samples three times for different breathing activities in front of MS Kinect. The three different 

stages of activities can be separated as follows:  

 First 60 seconds, deep and fast breathing 

 Second 60 seconds, aloud reading the article in the newspaper  

 Last 60 seconds, relaxing by listening deep meditation music.  

All the depth image data were captured and then continued to calculate the mean depth value 

from the Kinect to the subject, especially at the Region of Interest (ROI) on the thorax area. 

The mean depth value was calculated from the perpendicular distance between the subject to 

the receiver in Kinect. The movement of the breathing activities on the thorax area leads to the 

changing of mean depth value every time. The calculation can be depicted into time series 

waveforms or time series signal as pointed out in Figure 4.  

  

Figure 3. Kinect Depth Image (left) and ROI of Depth Image (right) 

 

Figure 4. Calculation result of subject 1’s mean depth value of ROI 
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2.2.2 Feature Extraction and Feature Reduction 

Fast Fourier Transform (FFT) is one of the recognized and useful tools for signal 

processing in time-series signal. To decompose signals into segmented breathing sequences, 

we used the equal time intervals called epoch. For calculating, the length of each epoch was 

set to every 30 timeframes. The epochs were then processed using frequency analysis in which 

frequency spectra were generated using FFT. The obtained feature extraction using the FFT 

process was presented in Figure 5. We have carried out FFT to transform the signal from its 

original time domain to a representation of frequency domain and vice versa [24]. The FFT 

analysis had been completed for four samples from four subjects, and the process continues to 

extract all of the principal components (PCs) as the features from the spectra through Principal 

Component Analysis  [25]. PCA is a technique for dimensional reduction that widely used in 

the time series signal analysis. To measure breathing activities rate and to process feature 

extraction and feature reduction for each subject, we did separately for each subject in order to 

validate the clustering and classification algorithm. Figure 6 shows the PCA result from one of 

the subject.  

 

Figure 5. Feature extraction result by using FFT 

 

Figure 6. Example of PCA value one of the subject 
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2.2.3 Clustering The Mean Depth Value of the Subject 

After feature reduction, then we apply non-parametric density-based clustering to the 

features to detect clusters. This step was executed in order to validate the annotation of the 

class label or labeling events on specific breathing activities for every timeframe [26]. We chose 

the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) for the clustering 

algorithm. Figure 7, Figure 8, Figure 9, and Figure 10 exhibit the clustering result in two 

dimensional from the subjects. It can be seen that the clustering process had yielded the 

separated three of the cluster area, which presented the three different breathing activities.  

 

Figure 7. Clustering result of the subject 1 

 

 

Figure 8. Clustering result of the subject 2 
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Figure 9. Clustering result of the subject 3 

 

Figure 10. Clustering result of the subject 4 

 

2.2.4 Classification 

In addition, the data from the subjects were used to be the dataset. All of the data have been 

divided into a training set and a test set throughout the experiments. The classification step was 

completed with the 10-fold cross-validation or jackknife test, each process in this step are 

repeated 10 times. We trained each fold in order to have a better estimation of the true error 

rate of each set. The 10-fold cross-validation comes from the cross validation technique to 

evaluate prediction performance from classification model. This technique splits the dataset 

into training and test data. The model is created by using the training data, and the test data is 

used to evaluate the performance of classification.  

 



 

13 

 

The classification was performed using Support Vector Machine (SVM), a supervised 

machine learning method with having good accuracy as well as being used for Protein 

Sequence Classification [27] and this algorithm can be used to solve classification or regression 

problem. In this part, an overview of the method used in this research was explained.  

The SVM is a classifier which separates the data in a different class on a maximal-margin 

hyperplane. A hyperplane is a line that splits the input variable space. SVM changes the 

information into a higher dimensional space with the goal that the nonlinear separable problem 

in the first example space can be changed to a linear separable problem. SVM algorithm 

implements an implicit mapping  of the input data into a high dimensional feature space as a 

kernel function turning the inner product of  (x),  (xi) between the images of two data points 

x, xi in the feature space. The data points only appear inside dot products with other points and 

the process took place in the feature space and called The “kernel trick” which introduced by 

Scholkopf and Smola[28]. More precisely, if a projection  : XH is used, the dot product  

(x),  (xi) can be represented by a kernel function k. 

k(x,xi) = [ (x),  (xi)]                               (1) 

which is computationally simpler than explicitly projecting x and xi into the feature space H[29]. 

The advantages of SVM implementation are: 

1. The efficient classifier in high-dimensional spaces.  

It is especially applicable to text or time-series signal classification problems where the 

dataset can have a large number of features. 

2. The efficient of memory used.  

The current process of appointing new members to a class uses only a subset of the 

training data. Consequently, only this subset needs to be stored in the memory when 

making classification decisions. 

3. Versatile.  

The process of class separation is often non-linear. Therefore, the ability to implement 

different kernels allows the flexibility for decision boundaries in order to get the better 

performance. 

The caret package was used to execute this algorithm on R programming. SVM 

function has a model using linear kernel and non-linear kernel like radial basis function; those 
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were realized to get which one better accuracy in this research. Customization on SVM function 

by selecting C value (cost) in linear classifier by inputting values in grid search. This step will 

increase the accuracy result. The results from classifying the breathing activities data captured 

by MS Kinect v2 for four subjects with 10-fold cross-validation and SVM classifiers are 

presented in Figure 11 and Figure 12. In this dissertation report, we try to use all the PCs and 

without using the PCs for feature reduction in order to get the highest accuracy of the 

classification. The classifier was used with SVM linear and radial basis function with grid or 

no grid in R programming. Based on the results, SVM radial with grid basis function seemed 

to be a good choice of classifier among SVM function. Moreover, non-parametric density can 

be implemented to execute clustering of the breathing activities by using depth image from 

Kinect v2.  

2.2.5 Classification Performance Evaluation 

A. Confusion Matrix 

The confusion matrix is a table that is used to determine the performance of a 

classifier[30]. This matrix has four combinations of prediction result as shown in table 2. True 

positive (TP) and True Negative (TN) occur when the result of the prediction is the same as 

the outcome of the real observation. False Positive (FP) and False Negative (FN) occur when 

the result of the prediction is different from the outcome of the real observation. 

Table 2. Confusion Matrix 

  Predicted Condition  

Positive  Negative  

True 

Condition  

Positive  True Positive (TP)  False Negative (FN)  

Negative  False Positive (FP)  True Negative (TN)  

 

B. Accuracy 

Accuracy is a measurement to calculate the proportion of the number of times the 

classification predicted the result correctly[30]. The formula to calculate accuracy is shown in 

below formula. 
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 TP TN
accuracy

TP TN FP FN




  
  

(1) 

 

C. Sensitivity 

Sensitivity is used to measure the proportion of the actual positive result which is 

classified correctly[30]. The formula to calculate sensitivity is shown in below formula. 

 TP
sensitiviy

TP FN



  

(2) 

 

D. Specificity 

Specificity is a used to calculate the classification performance of predicting negative 

results correctly[30]. The formula to calculate specificity is shown in below formula. 

 TN
specificity

TN FP



  

(3) 

This research calculated the classification performance evaluation using the accuracy. 

From Figure 11 and Figure 12, we had seen that the accuracy got better value when we did not 

use PCA for feature reduction. The performance reached over 95 % for all subjects using SVM 

radial with the grid as the classifier. For example, on subject 4, when all components on PCA 

was used for feature reduction, the accuracy reached 98.80%. Hence, PCA was not used, the 

accuracy up to 99.5%.  

 

Figure 11. Performance comparison of four subjects using 10-fold cross-validation and SVM 

classifier with all components of PCA 
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Figure 12. Performance comparison of four subjects using 10-fold cross-validation and SVM 

classifier without using components from PCA 

 

2.3 Discussion and Conclusion 

This paper has presented the method of capturing on breathing activities data from 

image depth of Kinect v2. This method is the noninvasive mechanism to estimate the activities 

of the subject from breathing activities monitoring. Those data were used to calculate the mean 

depth value on thorax area and were displayed on time series signal. FFT had been applied to 

do the feature extraction from time series into numeric values. PCA is optionally used for 

feature reduction on this classification, but the result exposed that the highest accuracy was 

achieved without using PCA components.  As a result, we have seen that, feature reduction 

using PCA is not effective on time series signal in our study. Besides, the process had carried 

out the clustering using non-parametric density estimation, and the supervised machine 

learning, classification, the algorithm had been implemented by doing 10-fold cross-validation 

and using SVM classifier for all four subjects. It has been shown the SVM radial with the grid 

is the most efficient classifier with the highest accuracy for all the subjects over 99%. The result 

obtained is promising to predict activities from breathing. However, further work is required, 

especially for feature selection in order to get better classification results for a larger dataset. 
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Chapter 3 Classification on Brainwaves for Sleep Stages for 

Automatic Annotation by High-Dimensional FFT Features from 

EEG Signals 

 

3.1 Introduction 

Sleep is one of the basic physiological needs, and an important part of life. A typical human 

spends one-third of his lifetime sleeping. Lack of sleep may cause health issues, influence 

mood, and interfere with cognitive performance[1,31]. Examination of sleep is usually 

performed with the aid of polysomnography (PSG). PSG is used to examine multiple 

parameters that may be useful in the diagnosis of sleep disorders, or may be analyzed in pursuit 

of a deeper understanding of sleep itself. Hollan, Dement, and Raynal introduced the term 

Polysomnography in 1974. PSG is performed using an electronic device equipped to monitor 

multiple physiologic parameters during sleep by recording corresponding electrophysiological 

signals, for instance: from the brain via electroencephalogram (EEG), from the eyes via 

Electrooculogram (EOG), from the skeletal muscles via Electromyogram (EMG), and from the 

heart via Electrocardiogram (ECG)[32]. To collect this data, recording devices are attached to 

the relevant locations of the body, typically including three EEG electrodes, one EMG 

electrode, and two EOG electrodes. ECG is also a compulsory component of PSG. 

Additionally, the monitoring of respiratory functions may be desired in the diagnosis of 

respiratory disorders such as sleep apnea and require the addition of other tools applied in 

conjunction with the EEG electrodes, most often a pulse oximeter, oral thermometer, nasal 

cannula, thoracic and abdominal belt, and a throat microphone[2,4].  

EEG records the electrical activity of the brain over a period of time. The EEG record is 

derived from multiple scalp electrodes to compare differences in electrical potential in different 

areas of the brain. The electrical potential in extracellular space increases in conjunction with 

neuronal activity, likely as a result of the extracellular currents originating from post-synaptic 

potentials and inhibitory post-synaptic potentials. The amplitude of the tracing that is captured 

on EEG is greater whenever individual neurons are active co-locally and contemporaneously. 

Electrodes are usually attached to the scalp and as a result, the contribution of a single neuron 

to the amplitude of the recorded tracing is quite small as the skull and scalp tissue attenuate the 

signal significantly[2,3].  



 

18 

 

Figure 13 represents the standard system used for measuring the EEG signal, termed the 

10-20 system, in which the minimum number of electrodes used is 21. This method regulated 

the physical placement and designations of electrodes on the scalp. The head is divided into 

proportions from important sites of the skull so that all areas of the brain are adequately 

covered. The label of 10-20 indicates that the actual distances between neighboring electrodes 

are either 10% or 20% of the distance from the nasion (front side of the head/ anteriorly) to the 

inion (back side of the head/ posteriorly) between ears and nose where electrode points are 

chosen. Generally, electrodes marked with even numbers are placed on the right side of the 

head and those marked with odd numbers on the left side. The electrodes are also marked with 

letters to represent their locations relative to the anatomical divisions of the brain: F (frontal), 

C (central), T (temporal), P (parietal), and O (occipital), Fp (Frontal pole). 

A subscript z is used to mark the midline electrodes as zero.  

The electric signal in the brain is determined by measuring the difference of the electric 

activity between two electrodes over period of time.  As it propagates, the signal gradually 

decays with distance from the source. Eventually, the signal has decayed to the point where 

gets precise measurement only from one of the parallel combinations of electrodes[2,3]. 

Fp1 Fp2

O2O1

T3

F4F3

T4

P3

C3 C4
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Fz
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P4
T6T5

Pz
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Right 

A2

Left

A1

 

Figure 13. Electrodes placement of EEG measurement [2] 

During PSG measurement, EEG electrodes can be affixed either to the scalp into the skin 

or within the skull (intracranially). Currently there are several methods to affix the scalp 

electrodes efficiently. The electrodes are typically made from silver chloride or gold, and are 

cup-shaped, designed to hold conducting paste. For this reason, the electrodes were 

occasionally glued in place to provide better result during recordings that lasted more than 24 

hours[2,3].  
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EEG waveforms have several kinds of rhythms. These rhythms are remarkably useful for 

classification annotation of sleep score as recorded by PSG. In a normal EEG, we differentiate 

these rhythms into five frequency bands. Table 3 lists the frequency and amplitude ranges of 

these bands[2,33].  

Table 3. Frequency and amplitude range of the EEG signal 

Bands Frequencies (Hz) Amplitude (µV) 

Delta 0.5 – 3.5 20 – 100 

Theta 3.5 – 7.5 10 

Alpha 7.5 – 12 2 – 100 

Beta 12 - 30 5 – 10 

Gamma >31  - 

 

Human sleep consists of cyclic stages, and the sleep stages are essential sections of activity 

during sleep. The three main stages of the sleep cycle are Awake, Non-REM (NREM) sleep, 

and Rapid Eye Movement (REM) sleep. The NREM phase is also called dreamless sleep: 

breathing is slow and the heart rate and blood pressure are normal. NREM sleep eventually 

deepens and leads to REM sleep. The REM stage occurs most often while dreaming. At the 

time, the body goes into a temporary paralysis to prevent it from acting out these dreams. 

However, during REM sleep the eyes move quickly back and forth. The absence of one of these 

stages or the overabundance of another can lead to the diagnosis of numerous conditions 

ranging from sleep apnea, hypersomnia, insomnia, or sleep talking[5].  

There are two recognized standards for interpreting sleep stages based on sleep recordings- 

the Rechtschaffen and Kales (R&K) criteria and the American Academy of Sleep Medicine 

(AASM) criteria. The R&K recommendations classify sleep into seven discrete stages: 

Wake/wakefulness, S1/drowsiness, S2/light sleep, S3/deep sleep, S4/deep or wave sleep, REM, 

and MT/Movement Time[34]. The AASM criteria are a modified version of the R&K criteria. 

Some differences between the AASM and R&K criteria are as follows[34,35]:  

1. NREM stages in the R&K criteria (S1, S2, S3, and S4) are referred to as stages N1, N2, 

and N3 in the AASM criteria. 

2. In the AASM criteria, deep sleep (N3) is a combination of the S3 and S4 stages of the 

R&K criteria. 

3. Movement Time (MT) is eliminated as a sleep stage in the AASM criteria.  
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The stages of sleep can be thought of as a cyclic alternation of Non-Rapid Eye Movement 

(NREM) and Rapid Eye Movement (REM) stages [36]. It has been recognized that NREM sleep 

consists of four distinct stages: S1, S2, S3, and S4, each with specific characteristics. In S1, the 

patient is drowsy but still awake. The appearance of sleep spindles, vertex sharp waves, and K 

complexes mark S2 sleep. Shallow sleep consists of both S1 and S2, while deep sleep consists 

of S3 and S4[37]. 

Conventionally, technicians have interpreted and marked the sleep stages manually. As 

such, it is a time-intensive process as well as being expensive and dependent on human 

resources. Because of the consuming-time process, expensive, and enormous process, it is not 

suitable to hold the large EEG datasets for sleep stage annotation by the human expert[6]. As a 

result, it has become necessary to develop a sleep stage classification in order to achieve better 

accuracy.  

Previous attempts at automated classification of sleep stage have been based on single-

channel as well as multi-channel EEG recordings and various other physiological markers. 

Ronzhina et al. described a single-channel EEG based scheme utilizing an artificial neural 

network coupled with power spectrum density analysis of EEG recordings [38]. Zhu et al. 

analyzed nine features from single-channel EEG recordings and applied an artificial 

intelligence technique referred to as a support vector machine (SVM) to perform 

classification[39]. High classification performance has been reported by Huang by applying 

short-time Fourier transform to a two-channels recording of forehead EEG signals and a 

relevance vector machine[40]. Lajnef et al. incorporated a large number of EMG, EOG, and 

EEG signal features into their analysis using a multi-class support vector machine for 

computer-assisted sleep scoring[41]. Other recent works have utilized multivariate linear 

regression[42], linked component analysis[43], sparse Bayesian learning[44], Bayesian machine 

learning approaches[45,46], and probabilistic common spatial patterns on multichannel EEG 

[47] to perform feature extraction and classification of EEG signals. In addition, a study of 

multi-class sleep stage analysis has been performed using the Bayesian neural network 

classifier model, achieving an accuracy of greater than 88%[48]. Aboalayon et al. have 

conducted a comprehensive review of Automatic Sleep Stage Classification (AASC) systems, 

which includes a survey of processing techniques including pre-processing, feature extraction, 

feature selection, dimensionality reduction, and classification. This study evaluated AASC 

methods against the Sleep-EDF database based on single-channel EEG recordings, and is 

remarkable for having selected 10 second epochs for its analysis. Their model’s performance 

had achieved the highest accuracy in comparison to previous results[49]. Braun et al. had 
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applied low dimensional FFT features on the sleep-EDF database with the usage of eight 

statistical features from the Pz-Oz EEG channel. The classification performance had reached 

with the accuracy 90.9%, 91.8%, 92.4%, 94.3% and 97.1% for all 6- to 2-state sleep stages[50]. 

In this report, we present a system of sleep stage classification based on EEG signals. 

Instead of using complicated processes of signal filtering, feature extraction, and feature 

selection, and we used high-dimensional features calculated by Fast Fourier Transform (FFT) 

from single- or multi-channel EEG signals. FFT is one of the traditional, verified techniques 

capable of extracting features from EEG signals. If an EEG signal is recorded at a sampling 

frequency of 100 Hz, the FFT can separate the signal into features in the range of 0-100 Hz. 

Typically, in previous studies, a small number of FFT features corresponding to the bands 

shown in 3 were extracted and used. However, a sampling window of 30 seconds at 100 Hz 

sampling frequency allows for an extraction of at most 3,000 features in the range of 0-100 Hz. 

In this study, we demonstrate that by incorporating high-dimensional FFT features by utilizing 

thousands of features into the analysis, it is possible to outperform state-of-the-art algorithms 

for the Sleep-EDF database. In addition, we report the relationship between the number of FFT 

features incorporated into the analysis and overall performance of our model. We applied this 

method to the DREAMS database. Our proposed approach consists of the main three steps. 

That are brainwaves acquisition from EEG channel, feature processing, and finally, the 

classification evaluation by measuring the accuracy. The flowchart of our approach is shown 

in Figure 14.  
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Figure 14. The flowchart of the proposed research 

 

3.2 Materials and Methods 

3.2.1 Experimental Data 

A. Dreams Dataset 

The first dataset used in this study is the DREAMS subject database. This dataset 

comprises 20 healthy subjects, including 16 females and four males, aged 20 – 65 years. The 

subjects who participated in this study were not taking any medication at the time. All twenty 

recordings were conducted in the sleep lab of Andr Vsale hospital (Montigny-le-Tilleul, 

Belgium), and spanned 7 to 9 hours each. The EEG data was collected using a 32-channel 

digital polygraph (BrainnetTM System, MEDATEC, Brussels, Belgium). In addition, the 

DREAMS subject database includes PSG data, comprising three channels of EEG data (C3-

A1 or CZ-A1, O1-A1, and FP1-A1), one channel of EMG data, and two channels of EOG data. 

The data had been recorded in European Data Format (EDF) at a sampling frequency of 200Hz.  
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These recordings come from people who are free of drugs and participants in other research 

projects that performed in the sleep laboratory and was chosen with their consistency.  

The sleep records were scored using both AASM and R&K annotation criteria by an expert 

from the sleep laboratory. Notably, since the R&K criteria designate the sleep stages as AWA, 

REM, S1-S4, ‘sleep stage movement’, and ‘unknown sleep stage’, the unknown sleep stages 

and movement times have been excluded from this analysis. Instead, the analysis has been 

conducted on the five states corresponding to AWA, N1, N2, N3, and REM of the AASM 

criteria[51]. The classification of sleep stage according to the R&K criteria is based on epochs 

of 20 seconds, whereas scoring according to the AASM criteria has been completed (nearly 

two years later) based on epochs of 30 seconds. A single expert of the sleep laboratory had 

annotated by visually.  

Hassan et al. and Seifpour et al. had conducted the studies using the Dreams dataset with 

R&K criteria[52-54]. Since we did not use the AASM criteria, we have chosen to quantify 

annotate the samples using only the R&K criteria (4). The total number of the samples is 20,143 

and it is close to the number of samples 20,257 used in the other study. Table 4 presents the 

characteristics of the subjects in Dreams Database.  

Table 4. The characteristic of the subjects on Dreams Dataset 

Name Sampling Frequency Age Sex Recording 

duration 

(hh.mm.ss) 

Subject1 200 Hz 23 Woman 08:00:40 

Subject2 200 Hz 47 Woman 08:12:30 

Subject3 200 Hz 24 Woman 08:24:20 

Subject4 200 Hz 48 Woman 08:46:30 

Subject5 200 Hz 46 Woman 08:51:30 

Subject6 200 Hz 65 Woman       08:18:40 

Subject7 200 Hz 45 Woman 08:26:00 

Subject8 200 Hz 22 Woman 08:05:00 

Subject9 200 Hz 21 Woman 09:18:40 

Subject10 200 Hz 20 Woman 08:36:20 

Subject11 200 Hz 30 Woman 08:24:10 

Subject12 200 Hz 54 Woman 08:00:40 

Subject13 200 Hz 23 Woman 09:15:40 
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Subject14 200 Hz 57 Woman       08:22:10 

Subject15 200 Hz 20 Woman 07:00:00 

Subject16 200 Hz 27 Woman 08:03:50 

Subject17 200 Hz 23 Man 08:18:30 

Subject18 200 Hz 27 Man 08:30:40 

Subject19 200 Hz 27 Man 08:36:50 

Subject20 200 Hz 20 Man 09:32:30 

 

Table 5. The number of samples in DREAMS dataset (R&K criteria) 

# of classes AWA REM S1 S2 S3 S4 

6 3,733 3,034 1,181 8,823 1,423 1,949 

5 3,733 3,034 1,181 8,823 3,372 

4 3,733 3,034 10,004 3,372 

3 3,733 3,034 13,376 

2 3,733 16,410 

 

We analyzed 42,000 features extracted from seven channels available in the dataset 

(CZ2_A1, CZ_A1, FP1_A2, FP2_A1, NAF2P_A1, O1_A2, and O2_A1). For each channel, 

6,000 features were extracted at a sampling frequency of 200 Hz over a 30 second epoch. These 

features were examined in combination or individually by channel.  

 

B. Sleep-EDF Dataset 

The second dataset is open-source, and many previous researchers have utilized this 

dataset in sleep scoring research[39,49,50,53,55-57]. Among three available versions of the 

dataset, we used an expanded version containing 61 recordings from 42 Caucasian male and 

female subjects. The subjects’ ages ranged from 21 to 101 years. This dataset was organized 

into two sub-sets. The first subset with 39 recordings from 20 subjects was EEG data recorded 

in a study from 1989. These subjects were healthy and in ambulatory condition. The second 

subset with 22 recordings from 22 subjects was EEG data recorded in a study from 1994 and 

the subjects reported feeling slight difficulty in falling asleep but were otherwise healthy. The 

EEG data had been collected over 24 hours of the daily lives of the subjects. A miniature 

telemetry system recorded nocturnal EEG data from the four subjects in a hospital [53]. The 

data was collected from just two channels: Fpz-Cz and Pz-Oz, at a sampling frequency of 100 

Hz. The previous researchers had established that on single-channel analysis the Pz-Oz channel 

demonstrated improved performance over the Fpz-Cz channel. Using R&K criteria, EEG 
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recordings of both of the subsets have been annotated by an experienced sleep technician in 30 

seconds basis. Therefore, the duration of each epoch is established as 30 seconds and yielded 

3,000 samples. The epochs had been annotated by sleep technicians as: AWA, REM, S1, S2, 

S3, S4, Movement Time, or ‘Unscored’. On the other hand, the annotations using AASM 

criteria consisted of the designations AWA, REM, N1, N2, and N3 and ‘Unknown sleep stage’. 

The number of samples according to R&K criteria are shown in table 6. After removing 

‘Movement Time’ and ‘Unscored’, total number of the samples is 127,663. The epoch duration 

was 30 seconds. 

Table 6. The number of samples in Sleep-EDF dataset (R&K criteria) 

# of classes AWA REM S1 S2 S3 S4 

6 74,827 11,848 4,848 27,292 5,075 3,773 

5 74,827 11,848 4,848 27,292 8,848 

4 74,827 11,848 32,140 8,848 

3 74,827 11,848 40,988 

2 74,827 52,836 

 

As far as features analyzed, we prepared 6,000 features extracted from two channels 

(Pz_Oz and Fpz_Cz). For each channel, 1,000 features were extracted at a sampling frequency 

of 100 Hz and epoch lasted 30 seconds. The features were used in the experiments separately 

or in combination.  

 

3.2.2 Feature Extraction with Fast Fourier Transform (FFT) 

 The feature represents a differentiating property or an operative component identified in 

a section of a pattern, and a recognizable measurement. Feature extraction is a critical step in 

EEG signal processing. Consequently, minimizing the loss of valuable information attached to 

the signal is one of the goals of feature extraction. Additionally, feature extraction decreases 

the resources required to describe a vast set of data accurately. When carried out successfully, 

feature extraction can minimize the cost of information processing, reduce the complexity of 

data implementation, and mitigate the possible need to compress the information[58].  

The extraction of remarkable statistical features from the EEG signal is necessary to 

perform sleep stage classification efficiently. In general, the EEG signal is highly complex and 

non-linear, so it would be better to use a non-linear model[59]. In this study, the Fast Fourier 

Transform (FFT) is utilized to extract the features of EEG signal for sleep stage classification. 

Hence, the values of a given time-series data as a numeric sequence data are converted into a 

finite set of the frequency domain. Then, to deconstruct signals into segmented EEG signal 

sequences, we divided them into equal time intervals called epochs. The length of each epoch 
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was set to every 30 seconds of EEG signal. Accordingly, the epochs were then processed using 

frequency analysis in which frequency spectra were generated using FFT. We used FFT to 

convert a signal from its original, time domain signal to a representation in the frequency 

domain signal and vice versa[24]. The FFT method employs mathematical techniques for EEG 

data analysis. FFT is applied n each epoch and Figure 15 represents in the form of time-domain 

signal and frequency-domain signal.  

 

 

 

Figure 15. EEG signals in time domain signal and frequency domain signal 

 

Previous studies have shown that FFT is a promising tool for stationary signal processing 

over virtually all other available methods in real-time applications, and it is more appropriate 

for sine waveforms such as in EEG signals. enjoys a speed advantage. However, the 

disadvantage is that it does not have excellent spectral estimation and cannot be employed for 

analysis of short EEG signals[58].  

 

3.2.3 Feature Selection and Optimization 

Feature extraction is an effective way of recognizing and visualizing significant data. 

This process shortens the time for training and application, as well as reducing demands for 

data calculation and storage. Some researchers combine several feature extraction techniques 

in order to achieve better data analysis. Consequently, application of multiple processes may 

often affect feature redundancy and expansion of feature dimension. Feature selection reduces 

the dimension of feature space and minimizes the data training and application[60]. In this 

study, feature selection was simply conducted by selecting EEG channel(s).  

 



 

27 

 

3.2.4 Classification Evaluation 

The classification step was completed with the 5- or 10-fold cross-validation or jackknife 

test. This means for each process, this step is repeated 5 or 10 times per sample. We trained 

each fold in order to have a better estimation of the true error rate of each set. The 5- or 10-fold 

cross-validation comes from the cross validation technique to evaluate prediction performance 

from classification model. This technique splits the dataset into training and test data. The 

model is created by using the training data, and the test data is used for evaluating the 

performance of prediction.  

From among various classification algorithms, we adopted the multiclass Support Vector 

Machine (SVM) algorithm, a supervised machine learning method, implemented in the kernlab 

package for R. The SVM classifier is a popular algorithm widely applied to various problems 

in machine learning. SVM constructs the maximum margin around the separating hyperplane 

between the classes. In this study, we utilized a Gaussian or Radial Basis Function (RBF) 

Kernel. One of the advantages of the SVM method is that this method is effective when the 

number of features is greater than the number of samples. In addition, the model is sufficient 

as a classification model of the EEG signal.   

 

3.3 Experimental Results 

3.3.1 Classification of DREAMS dataset 

First, we applied our method of classification to the DREAMS dataset. Seven EEG 

channels described in this dataset were first analyzed separately (i.e. the number for feature 

extracted from one channel was 200 Hz × 30 seconds = 6,000), then analyzed in combination 

(42,000 features in total). The 6 classes defined by R&K criteria were used. The accuracies 

calculated through 10-fold cross-validation are shown in table 7. In addition, due to the large 

amount of data in our study (a maximum of 42,000 features from 20,143 samples), we 

conducted cross-validation subject by subject, and averaged 20 accuracies. However, we were 

able to demonstrate that combination of features from seven channels improved the 

performance ~5 %.  

 

Table 7. Performance comparison on DREAMS dataset (R&K criteria, 6 classes) 

Method Length of 

epoch (sec) 

# of epochs Accuracy 

(%) 

Hassan et al.2016 [52] 30 20,257 68.74 
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Hassan et al. 2017 [53] 30 20,257 76.39 

Seifpour et al. 2018 [54] 30 20,257 83.40 

Our method (CZ2_A1) 30 20,143 69.97 

Our method (CZ_A1) 30 20,143 70.22 

Our method (FP1_A2) 30 20,143 70.88 

Our method (FP2_A1) 30 20,143 70.14 

Our method (NAF2P_A1) 30 20,143 70.01 

Our method (O1_A2) 30 20,143 69.72 

Our method (O2_A1) 30 20,143 70.02 

Our method (all seven channels) 30 20,143 75.18 

 

3.3.2 Classification of Sleep-EDF dataset 

Secondly, the Sleep-EDF dataset was classified. In this experiment, 2-6 classes defined by 

R&K criteria were selected as class labels. Features from two channels were analyzed 

separately or in combination. From one channel, 3,000 features (i.e. 100 Hz × 30 seconds) were 

extracted. For performance evaluation, 5-fold cross-validation was conducted. The results 

obtained using our method are compared with the results acquired using other state-of-the-art 

methods in table 8. In this table, it can be seen that our method with 6,000 features from two 

channels (Pz_Oz and Fpz_Cz) slightly outperformed Yildirim’s method in the classification of 

6 and 5 classes and achieved nearly equal performance in 4, 3, and 2 classes. 

 

Table 8. Performance comparison on Sleep-EDF dataset (R&K criteria, 2-6 classes) 

Method Length of 

epoch (sec) 

# of epochs # of classes Accuracy 

(%) 

Nakamura et al. 2017 [56] 30 126,699 6 86.60 

5 88.60 

4 91.00 

3 94.50 

2 97.40 

Yildirim et al. 2019[57] 30 127,512 6 89.43 

5 90.48 

4 92.24 

3 94.23 

2 97.85 

Our method (Pz_Oz) 30 127,663 6 88.56 

5 89.93 

4 91.04 

3 93.31 

2 97.59 
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Our method (Fpz_Cz) 30 127,663 6 88.38 

5 86.21 

4 87.85 

3 91.03 

2 96.73 

Our method 

 (Pz_Oz and Fpz_Cz) 

30 127,663 6 89.76 

5 91.02 

4 92.17 

3 94.06 

2 97.82 

 

To clarify the relationship between the number of included FFT features and performance, 

we conducted similar performance evaluations after removing features at fixed intervals. The 

results are shown in Table 9 and Figure 16, and it was revealed that more than one thousand 

features can contribute to improve the performance of classification. It also suggests the 

possibility of further improvement of performance by incorporating more features.  

 

Table 9. Effect of reduced number of features on Sleep-EDF dataset (R&K criteria, 2-6 classes) 

# of 

classes 

6,000 

features 

3,000 

features 

2,000 

features 

1,000 

features 

500 

features 

250 

features 

6 89.76 89.76  89.60  89.39  88.87  88.15  

5 91.02 91.02  90.87  90.68  90.22  89.53  

4 92.17 92.17  91.98  91.81  91.32  90.54  

3 94.06 94.06  94.00  93.87  93.61  93.19  

2 97.82 97.82  97.80  97.76  97.64  97.48  

 



 

30 

 

 

Figure 16. Effect of reduced number of features on Sleep-EDF dataset  

(R&K criteria, 2-6 classes) 

 

3.3.3 Classification of Sleep-EDF dataset expanded (197 recordings) 

Finally, we show the results of applying our method against the latest, extended version of 

the Sleep-EDF database. In contrast to the first version of the database which consisted of 61 

recordings (version 1), the latest version consists of 197 recordings (version 2, released in 

2018).  Table 10 contains the result of the classification experiment using our method. “SC” 

and “ST” found in the recording ID prefix stand for “Sleep Cassette” and “Sleep Telemetry”, 

respectively. In this experiment, 10-fold cross validation was conducted for each recording. 

The average, highest, and lowest accuracies were 87.84%, 96.54%, and 37.03%, respectively. 

Since the accuracies are greatly affected by the degree of sample distribution among the classes 

in each recording, a large discrepancy exists between the highest and lowest accuracies. For 

example, in the recording SC4201 which achieved the highest accuracy, the AWA class 

occupies ~ 73% of the recording. In contrast, the lowest accuracy was achieved by ST7151 

with a more even distribution between the classes (AWA:REM:S1:S2:S3:S4 = 

104:143:78:304:142:126). This is even more clearly demonstrated in Figure 17, where we show 

the relationship between accuracy and degree of class imbalance (represented in this 
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experiment by the standard deviation of class sizes in a recording). There appear to be an almost 

linear relationship (correlation coefficient was 0.9857).  

 

Table 10.Performance of classification for each recording in Sleep-EDF database (version 2) 

ID Accuracy 

(%) 

 ID Accuracy 

(%) 

 ID Accuracy 

(%) 

 ID Accuracy 

(%) 

SC4001 94.17  SC4252 92.77  SC4522 94.24  SC4812 91.26 

SC4002 92.49  SC4261 89.25  SC4531 89.22  SC4821 92.67 

SC4011 94.27  SC4262 92.43  SC4532 92.68  SC4822 89.17 

SC4012 93.43  SC4271 90.37  SC4541 93.68  ST7011 75.56 

SC4021 94.11  SC4272 91.59  SC4542 90.28  ST7012 81.39 

SC4022 92.86  SC4281 91.27  SC4551 90.97  ST7021 83.62 

SC4031 95.88  SC4282 91.42  SC4552 94.29  ST7022 79.29 

SC4032 94.44  SC4291 91.54  SC4561 84.57  ST7041 58.73 

SC4041 90.51  SC4292 91.67  SC4562 90.25  ST7042 65.79 

SC4042 91.58  SC4301 91.48  SC4571 89.66  ST7051 43.61 

SC4051 95.29  SC4302 92.94  SC4572 92.47  ST7052 84.77 

SC4052 92.51  SC4311 91.99  SC4581 89.89  ST7061 80.09 

SC4061 95.33  SC4312 89.40  SC4582 88.17  ST7062 85.53 

SC4062 94.27  SC4321 88.92  SC4591 91.41  ST7071 79.06 

SC4071 93.71  SC4322 92.26  SC4592 85.54  ST7072 81.05 

SC4072 93.70  SC4331 91.51  SC4601 92.68  ST7081 83.10 

SC4081 92.56  SC4332 94.24  SC4602 86.79  ST7082 81.77 

SC4082 90.92  SC4341 89.21  SC4611 87.08  ST7091 75.45 

SC4091 91.59  SC4342 96.42  SC4612 93.10  ST7092 77.99 

SC4092 90.59  SC4351 94.34  SC4621 84.74  ST7101 80.34 

SC4101 93.38  SC4352 90.59  SC4622 91.20  ST7102 75.67 

SC4102 94.84  SC4362 92.08  SC4631 91.06  ST7111 82.40 

SC4111 92.12  SC4371 91.13  SC4632 93.04  ST7112 83.43 

SC4112 95.32  SC4372 86.79  SC4641 94.62  ST7121 79.76 

SC4121 92.54  SC4381 93.39  SC4642 92.58  ST7122 82.65 

SC4122 91.56  SC4382 93.23  SC4651 89.64  ST7131 85.80 

SC4131 92.97  SC4401 91.94  SC4652 85.62  ST7132 76.47 

SC4141 95.12  SC4402 93.40  SC4661 85.77  ST7141 75.50 

SC4142 95.31  SC4411 92.92  SC4662 88.53  ST7142 72.74 

SC4151 92.97  SC4412 89.87  SC4671 91.07  ST7151 37.03 

SC4152 93.25  SC4421 95.23  SC4672 93.35  ST7152 79.94 

SC4161 90.29  SC4422 92.07  SC4701 88.10  ST7161 48.93 

SC4162 91.04  SC4431 91.50  SC4702 92.39  ST7162 74.06 

SC4171 92.20  SC4432 92.08  SC4711 88.52  ST7171 79.37 

SC4172 86.52  SC4441 88.84  SC4712 93.23  ST7172 77.20 

SC4181 92.34  SC4442 90.77  SC4721 83.95  ST7181 82.92 

SC4182 91.00  SC4451 91.24  SC4722 87.05  ST7182 54.30 

SC4191 90.25  SC4452 90.94  SC4731 88.42  ST7191 47.16 

SC4192 91.21  SC4461 94.06  SC4732 87.96  ST7192 87.10 

SC4201 96.54  SC4462 93.78  SC4741 92.12  ST7201 66.16 

SC4202 95.04  SC4471 90.90  SC4742 90.71  ST7202 69.62 

SC4211 92.40  SC4472 85.81  SC4751 94.07  ST7211 79.40 

SC4212 93.67  SC4481 90.11  SC4752 87.98  ST7212 77.28 

SC4221 88.17  SC4482 93.31  SC4761 92.82  ST7221 82.95 

SC4222 89.88  SC4491 93.88  SC4762 89.00  ST7222 82.78 
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SC4231 93.08  SC4492 92.37  SC4771 90.33  ST7241 65.62 

SC4232 86.76  SC4501 91.16  SC4772 90.19  ST7242 62.94 

SC4241 92.30  SC4502 93.77  SC4801 91.42    

SC4242 94.92  SC4511 90.53  SC4802 91.43    

SC4251 96.34  SC4512 92.85  SC4811 91.79    

 

 
Figure 17. Plot of accuracy and standard deviation of class sizes in each recording 

 

3.4    Discussions and Conclusion 

To improve the performance of sleep stage classification, previous work has mainly 

focused on the following points: 

 More effective methods of feature extraction from the original EEG signal (e.g. Wavelet 

Transform)  

 Application of filters (e.g. band-pass filter) and noise reduction algorithms 

 Identification of better classifier algorithms (e.g. Random Forest, Adaptive boosting, and 

Convolutional Neural Network) 

 Improvement of class imbalance by under- and/or over-sampling (e.g. SMOTE) 

 Removing useless or harmful features by feature selection (e.g. selection by feature 

importance) 

In contrast, we have demonstrated in this paper that fully utilizing thousands of FFT 

features extracted from single- and multi-channel EEG signals is an effective means of 

improving the performance of automated sleep stage classification. In our experiment 6- and 
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5-class classification against the Sleep-EDF dataset, our method outperformed that of Yildirim 

et al. 2019[57], which is the most recent and advanced methods that has demonstrated the 

highest-level performance till date.  

As our method relies on high-dimensional FFT features, the effect of reducing the number 

of FFT features was also evaluated. Throughout the experiments, we demonstrated that most 

high-dimensional FFT features could contribute to the improvement of classification 

performance. By combining these high-dimensional FFT features with other features studied 

in previous works, further improvement of performance may be possible.  

Additionally, we demonstrated the result of application of our method to the classification 

of the recording included in the latest version of Sleep-EDF database. We clearly showed that 

accuracy in classifying a recording is highly influenced by the degree of class imbalance. It 

suggests that by combining our method with under- and/or over-sampling methods like 

SMOTE, we may achieve better classification performance of the recordings in the latest Sleep-

EDF database.  

One of the disadvantages in our method is the intensive computational requirements in 

memory and processor. Selective inclusion and exclusion of the thousands of features that we 

have collected without decreasing classification performance is our next challenge.  
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Chapter 4 Summary and Future Work 

4.1 Summary 

We developed a simple and powerful approach for automatic annotation of 

hyperventilation and sleep stages in Electroencephalogram examination. There are important 

keys in our research:  

1. We already developed the two methods for automatic annotation of hyperventilation in 

the case on the classification of breathing activities by depth image from Kinect.  

2. Those data were used to calculate the mean depth value on thorax area and were 

displayed on time series signal and the FFT had been applied to do the feature extraction 

from time series into numeric values. 

3. It has been shown the SVM radial with the grid is the most efficient classifier with the 

highest accuracy for all the subjects over 99%. So, this obtained result is promising to 

predict activities from breathing. 

4. We have already generated the automatic annotation of brainwaves for sleep stages 

classification from the EEG signals datasets.  

5. We have demonstrated in this paper that fully utilizing thousands of FFT features 

extracted from single- and multi-channel EEG signals is an effective means of 

improving the performance of automated sleep stage classification into 2-6 classes. 

6. Using the expanded version of Sleep-EDF dataset with 61 recordings, our method 

achieved better or nearly equal performance in comparison with the most recently 

reported and state of the art method.  

7. Both of the two methods that have been developed have similarities in the types of data 

carried out in the experiments. Those data are in time-series data that will be executed 

in the next process using machine learning algorithms.  

 

4.2 Future Work 

To improve the performance of hyperventilation and sleep stage classification, previous 

work has mainly focused on the following points: 

 More effective methods of feature extraction from the original EEG signal (e.g. Wavelet 

Transform)  

 Application of filters (e.g. band-pass filter) and noise reduction algorithms 
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 Identification of better classifier algorithms (e.g. Random Forest, Adaptive boosting, and 

Convolutional Neural Network) 

 Improvement of class imbalance by under- and/or over-sampling (e.g. SMOTE) 

 Removing useless or harmful features by feature selection (e.g. selection by feature 

importance) 
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