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Abstract— When diagnosing and treating sleep disorders, the 

manual classification of sleep stages is a time-consuming but 

crucial step, and the automation of this process has been a focus 

of recent research. Many kinds of research have been conducted 

on the automation of sleep stage classification. In this paper, we 

proposed the effect of feature selection on an automated system 

based on EEG signals, which was then followed by classification 

using various supervised classifiers such as Random Forest and 

SVM. The high dimensional FFT features were used to extract 

the characteristics of EEG for the classification of sleep stages. 

The EEG dataset is used from the Sleep-EDF dataset, which is 

freely available. The accuracy as the performance evaluator on 

the Random Forest model had gained the best value on 95.93%, 

90.41%, 87.91%, 86.92%, and 84.86% and the SVM model 

reached 96.63%, 91.27%, 88.90%, 87.94%, and 87.94% for 2-6 

state classification. Finally, in this proposed research the feature 

selection phase affects the model's accuracy. 

Keywords—EEG signals, feature selection, Random Forest, 

Sleep-EDF, Support Vector Machine (SVM).  

I. INTRODUCTION 

Human beings' most important physiological activity is 
sleep. Sleep deprivation has been shown to weaken the 
immune system, putting people's lives and health at risk[1]. 
Numerous studies have demonstrated that tired driving is 
causing irreversible implications for an increasing number of 
accident drivers. Sleep fragmentation and apnea are common 
in those who have severe sleep-related ailments. When they 
enter a deeper sleep state, their airways can become obstructed, 
preventing them from breathing normally. Because of the 
interference, the body is forced to return to a lighter sleep stage 
to maintain improved breathing. Sleep apnea patients do not 
go through the stages of sleep that other people do[2], [3]. As 
a result, evaluating sleep status can help people better 
understand their sleeping habits, develop sleep disorder 
prevention methods, and safeguard their sleep health. Different 
sleep stages must be categorized to achieve a consistent sleep 
state throughout the night. Increased accuracy of sleep stage 
identification is needed in order to better understand sleep-
related diseases and disorders [4]. 

Currently, polysomnography (PSG) is mostly utilized in 
clinical settings to assess sleep. There are numerous 
physiological signals that must be recorded by the PSG, such 
as EOG (electrooculogram), EEG (electroencephalogram), 
EMG (electromyogram), and ECG (electrocardiogram), as 

well as pulse oximetry and breathing signals. Experts 
(electroencephalographers) manually identify sleep stages 
(scoring) by splitting the full sleep record into 30-second 
epochs and assigning a specific sleep stage to each epoch[5]. 
The difference in electric activity between the two electrodes 
over time is used to determine the electric signal in the brain. 
The signal steadily decays with distance from the source as it 
propagates. To sum up, the signal is smaller in value because 
only one of the parallel combinations of electrodes offers an 
accurate measurement of the current [6]. The example on the 
had executed the EEG signal from a single channel on the eye-
state characterization[7].  

Some certain waves and events characterize a recorded 
signal, especially the EEG. The sleep stages include the night 
wake (wake) stage, the REM (Rapid Eye Movement) stage, as 
well as the NREM (Non-Rapid Eye Movement) stage. 
According to the American Academy of Sleep Medicine 
(AASM), the NREM stage can be further divided into N1, N2, 
and N3 stages. There are two distinct stages of N3 
development: R&K (R&K) Stage 3 and R&K Stage 4 (S3) 
(Rechtschaffen, 1968). One of the most frequently 
acknowledged standards for measuring sleep stages is the 
Rechtschaffen and Kales criterion (R & K) and American 
Academy of Sleep Medicine (AASM) criteria. According to 
the R & K recommendations, sleep is broken down into seven 
stages: waking, sleepiness, light sleep, deep sleep, REM, and 
MT/movement time. The AASM criteria, on the other hand, 
are based on the R&K criteria. Some of the differences 
between the AASM and R & K criteria are as follows[4]: 

1. When referring to the R & K criteria, the stages S1, 
S2, S3, and S4 are referred to as stages N1, N2, and 
N3 when referring to the AASM criteria. 

2. Deep sleep (N3), according to the AASM criterion, is 
a combination of the R & K criteria's S3 and S4 stages, 
respectively. 

3. According to the American Academy of Sleep 
Medicine criteria, movement time (MT) is no longer 
recognized as a sleep stage. 

The sleep stages were manually evaluated and annotated in 
the previous version. The outcome is a time-consuming and 
expensive process that relies heavily on human capital. A 
human expert cannot annotate large EEG datasets for sleep 
phases because it takes too much time, money, and effort.[8]. 
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As a result, developing a sleep stage classification has become 
important in order to improve accuracy. 

Automatic sleep stage identification research has primarily 
employed frequency-domain data, such as the power spectral 
estimate of EEG waveforms' various frequency sub-bands, to 
extract features from polysomnographic signals. Neural 
networks and fuzzy logic algorithms were used in the 
categorizing process, among other methods [9]. Wavelet 
packets were employed for feature extraction in other methods 
and alternative classification algorithms, including rule-based 
reasoning [10], [11]. Some researchers had conducted the 
research based on sleep stages classification using feature 
selection, but the dataset used was different[12]. We executed 
this research from the Sleep EDF dataset[13].  

Using PSG signals, specifically EEG signals, we 
investigated the effect of feature selection on an automated 
sleep stage classification system. This research was followed 
by classification using various supervised classifiers, such as 
Random Forest and SVM. It is fed into an automated system, 
which evaluates the sleep stages based on the Sleep-EDF 
dataset, with EEG signals from healthy and sleeps problem 
patients as inputs. We employed only one or two EEG 
channels, making practical installation more straightforward 
than other cutting-edge systems that utilized PSG or multiple 
EEG channels or other physiological data for automated sleep-
stage scoring, which are more complicated to implement [14], 
[15]. When compared to sleep scoring using multi-modal 
signals, the subject's comfort level is also improved. 
Furthermore, we used high-dimensional features derived from 
single- or multi-channel EEG signals using the Fast Fourier 
Transform (FFT). FFT is a time-tested and proven technique 
for extracting features from EEG signals. Our proposed 
method consists of four basic steps: EEG channel capture of 
brainwaves saved in the dataset, preprocessing, feature 
extraction, and classification evaluation using SVM and 
Random Forest classifiers to measure accuracy. 

II. MATERIALS AND METHODS 

A. The Dataset 

The EEG dataset used in this investigation was derived 
from the Sleep-EDF dataset[13], which is freely available. An 
extended version of the dataset with 61 recordings from 42 
Caucasian male and female volunteers was used in this study, 
and it was one of three versions that were available. The 
participants ranged in age from 18 to 79 years old. This data 
was divided into two sections. EEG data from a study 
conducted between 1987 and 1991 comprised the first subset, 
which included 39 recordings from 20 participants. These 
individuals were in good health and were ambulatory. The 
second collection, which contained 22 recordings from 22 
individuals, was derived from EEG data gathered in a 1994 
study in which the participants had some difficulty going 
asleep but were otherwise healthy. The participants had some 
difficulty falling asleep but were generally healthy. The EEG 
data was collected over the course of 24 hours while the 
subjects were going about their normal lives. In a hospital 
setting, a small telemetry device was used to record the EEG 
data from four participants over the night. During our 
suggested research, data was collected from two channels: 
Fpz-Cz and Pz-Oz, with a sampling frequency of 100 Hz for 
each channel. Even-numbered electrodes are usually put on the 
right side of the head, whereas odd-numbered electrodes are 
placed on the left. The midline electrodes are denoted by the 

subscript z as zero. Besides that, the electrodes are labeled with 
letters denoting their locations in reference to anatomical brain 
divisions: C for central, F for frontal, T for temporal, O for 
occipital, P for parietal, and Fp for frontal pole, as depicted in 
fig.1 and fig.2 for the suggested research approach. 
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Fig. 1. The Placement of Electrodes on EEG Measurement[16] 

 

 
Fig. 2. The Research Procedure 

B. Preprocessing 

 Based on the research procedure that the following 
processes were performed in this preprocessing, such as sleep 
labeling of the data set from 2- to 6-state categorization and 
combining all recorded subjects. EEG recordings of both 
categories had been interpreted on a 30-second basis by an 
experienced sleep technologist using R & K criteria. As a 
result, the period of each epoch was set to 30 seconds, resulting 
in a total of 3000 samples. "AWA," "REM," S1, S2, S3, S4, 
"Movement Time," and "Unscored" were the epochs 
designated by the sleep technologists. Annotations made by 
the American Academy of Sleep Medicine (AASM) 
comprised the classifications AWA, REM, N1, N2, N3, and 
"Unknown sleep state." In TABLE I, the number of samples 
was calculated according to the R&K criteria. After removing 
the samples with the labels "Movement Time" and 
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"Unscored," the total sample size is 127,663. During the 
period, time stood still for 30 seconds. In terms of the number 
of features analyzed, we produced the various features 
generated by feature selection, which began with 250, 500, 
1000, 2000, 3000, and 6000 features taken from two channels 
(Pz-Oz and Fpz-Cz) and progressed to 6000 features taken 
from two channels (Pz-Oz and Fpz-Cz). The sampling 
frequency is 100 hertz, and the epoch is 30 seconds. In the 
studies, the characteristics were used either individually or in 
combination. 

TABLE  I. The total samples in Sleep-EDF dataset based on R&K criteria 

∑ 

classes 

AWA REM S1 S2 S3 S4 

6 74,827 11,848 4,848 27,292 5,075 3,773 

5 74,827 11,848 4,848 27,292 8,848 

4 74,827 11,848 32,140 8,848 

3 74,827 11,848 40,988 

2 74,827 52,836 

 

C. Feature Extraction 

 The feature represents a distinctive quality or an operative 
component that has been recognized in a pattern section, as 
well as an identifiable measurement that may be identified. 
The extraction of features from EEG signals is a critical stage 
in the processing of EEG signals. As a result, one of the 
objectives of feature extraction is to reduce the amount of 
meaningful information associated with the signal that is lost 
during processing. Furthermore, feature extraction minimizes 
the amount of time and resources required to accurately 
characterize a huge amount of information. It is possible to 
reduce the cost of data processing, simplify data 
implementation, and reduce the need to compress data if 
feature extraction is done appropriately[17]. Because EEG 
signals are dynamic and typically nonstationary, their 
frequency components must be known to determine when they 
occur. Time-frequency analysis is particularly well suited to 
dealing with such problems. In high frequency locations with 
transient waves, we usually need higher time accuracy, and in 
steady waves, we usually need more frequency resolution[18].  

 In this study, the Fast Fourier Transform (FFT) was 
utilized to extract the properties of EEG data in order to 
categorize sleep stages using a classification system. Because 
of this, the values of a specific time series are translated into a 
specific frequency domain and stored as numeric sequence 
data. Then we separated them into equal time periods called 
times in order to deconstruct the data into segmented EEG 
signal sequences, which we named segments. The length of 
each epoch dictated the length of the entire EEG signal, which 
was 30 seconds. The frequency spectra were produced using 
FFT when the frequency analysis was completed, and the 
epochs were processable. We used Fourier Transform (FFT) 
to transform a signal from its original time domain signal into 
a frequency domain signal[19]. Fig . 3 depicts a dataset from 
the Sleep EDF in the form of a time-domain signal and a 
frequency-domain signal on one of the datasets[13].   

 

 

Fig. 3. The Form of Time Domain and Frequency Domain Signal 

D. Feature Selection 

Feature selection is the third step in the machine learning 
process, and it is crucial to the classifier's effectiveness. The 
purpose of this stage is to identify a collection of N features 
that are most useful in distinguishing between sleep categories 
based on the total number of classes that we have chosen. 
When it came to the Sleep-EDF dataset, we looked at the 
number of relevant features that could be selected from among 
250, 500, 1000, 2000, 3000, and 6000 for each number of 
classes. The most acceptable feature subset for each number of 
classes was then chosen. More detail on the feature selection 
technique utilized in this work can be found in, which 
addresses essentially the same procedure as the one described 
in this study[20]. 

To avoid selecting features that are dominant in only a few 
patterns, the best N features were chosen using a 5-fold cross 
validation technique, with each fold including roughly the 
same number of segments for each sleep category. The 5-fold 
cross validation is an iterative procedure in which four folds 
are employed for feature selection in each iteration. The N 
features with the highest number of repeats (probability of 
appearance) were chosen as the final set of selected features 
after all iterations were completed. It is preferable to choose N 
as small as possible to avoid over-fitting. We have tried with 
the total number of different features in feature selection 
because it has been conveyed by Delimayanti et al. that more 
features are used to improve the performance of 
classification[4]. We employed a random forest classifier and 
a support vector machine in this study to categorize five 
examples into two to six classes using R& K criteria[14], [21].  
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III. RESULT AND DISCUSSION 

As indicated in the pre-processing stage, the EEG data 
retrieved from the polysomnographic recording was 
processed, filtered, and segmented into 30 s epoch. The high-
dimensional FFT features were then used to perform time–
frequency analysis. The technique was performed for all 61 
records, and the features data from all records was combined 
into a single features data set comprising 127,663 sleep epochs 
in total. In a random way, the entire data set was divided into 
two sets: a training set containing 4/5 of the features data and 
a testing set containing 1/5 of the remaining features data. A 
variety of classifiers, including Random Forest and SVM, 
were developed and tested using the training data set and the 
test data set, respectively. The performance of the proposed 
system was evaluated by comparing the output score of the 
classifiers to the score of the experts. 

 In addition, we had picked the multiclass support vector 

machine (SVM) technique, which is a supervised machine 

learning approach, from among the numerous classification 

algorithms that were available for consideration as a 

supervised machine learning approach. The SVM classifier is 

a well-known machine learning algorithm used to address a 

wide range of problems in various fields. The SVM algorithm 

is used to calculate the most significant margin around the 

separation hyperplane between the classes. In this inquiry, we 

used a Radial Basis Function (RBF) Kernel to solve the 

problem. One of the advantages of the SVM approach is that 

it may be employed when the number of features exceeds the 

number of samples, which is one of the most common 

situations. Furthermore, the model is suitable for use as a 

categorization model for EEG signals. After that, the 

performance of the SVM approach is compared to that of the 

widely used random forest classification method. 

 For two -six classes specified by R & K criteria were 

chosen as class labels in this experiment. Two channels' 

features were evaluated separately or in combination. 3000 

features (100 Hz 30 s) were retrieved from a single channel. 

In addition, five-fold cross-validation was used to assess 

performance. The findings of Random Forest and SVM are 

compared to the outcomes of the acquisition. In the 

categorization of 6 to 2 classes, our technique with 6000 

characteristics from two channels (Pz_Oz and Fpz_Cz) 

outperformed all other methods, as shown in tables 2 and 3. 

 
TABLE  II. The Performance of Reduced Number of Features with Random 

Forest Classifier (R&K Criteria, 2-6 Classes) 

#of 

Classes 

6000  3000  2000  1000  500  250  

6 84.45% 84.81% 84.86% 84.84% 84.35% 83.89% 

5 86.67% 86.92% 86.91% 86.78% 86.20% 85.71% 

4 87.64% 87.78% 87.91% 87.75% 87.23% 86.63% 

3 90.02% 90.26% 90.41% 90.19% 89.57% 89.01% 

2 95.60% 95.81% 95.93% 95.77% 95.21% 94.29% 

 
TABLE  III. The Performance of Reduced Number of Features with SVM 

Classifier (R&K Criteria, 2-6 Classes) 

#of 

Classes 

6000 3000 2000 1000 500 250 

6 85.92% 87.94% 86.31% 84.92% 83.09% 83.31% 

5 86.87% 87.94% 87.75% 86.41% 84.60% 84.18% 

4 87.52% 88.90% 88.66% 86.74% 84.30% 83.85% 

3 90.38% 91.27% 90.99% 88.14% 86.86% 86.47% 

2 96.53% 96.63% 96.44% 95.65% 93.63% 91.55% 

 

 In the performance report in table II and III, we can see that 
the accuracy in models with Random Forest and SVM 
increases as the number of features is increment value from 
feature selection. The accuracy as the performance evaluator 
on the Random Forest model had gained the best value on 
95.93%, 90.41%, 87.91%, 86.92%, and 84.86% for 2-6 state 
classification. On the other hand, the SVM model reached 
96.63%, 91.27%, 88.90%, 87.94%, and 87.94% for 2-6 state 
classification. The model with the SVM algorithm has given 
the best accuracy value compared to the Random Forest 
algorithm. Sleep stage classification in the form of time-series 
signals, as well as results obtained in text data classification, 
are made possible by the SVM algorithm, which produces 
classification results with the highest accuracy values. The 
SVM algorithm is also used in text data classification[22]. 

 Moreover, it was found that for a certain number of 
features, the accuracy value reached the best. In Table II, with 
a feature selection of 2000 features, the best accuracy value 
was reached compared to some of 3000 and 6000 features. 
Moreover, in Table III, the research had conducted the model 
on an SVM classifier. The optimum number of features had 
been gained in the number of 3000 features from feature 
selection. The accuracy as the performance. It can be stated 
that feature selection improving the accuracy of the proposed 
model. 

IV. CONCLUSION 

It was successfully investigated on the effect of feature 
selection on automated sleep stage identification system based 
on EEG signal using R&K standard. This EEG signal was 
captured from the multichannel. The extraction of features 
from EEG signals has proven to be successful in utilizing time-
frequency analysis using high dimensional FFT features. 
Although the dataset used records individual activities for 
almost one day (20- 24 hours), the accuracy obtained has 
provided more than 88% to overcome the imbalanced data. At 
the same time, the performance evaluation with the 2-6 state 
classification improved as the number of features executed and 
the feature selection attribute. In addition, feature selection 
affects the accuracy value of the model used. The model with 
SVM achieves the highest accuracy value with 3000 features, 
while the model with Random Forest has 2000 features. It can 
be concluded that SVM classifiers had gained the highest 
accuracy compared with the Random Forest on sleep stage 
classification on the sleep-EDF dataset. 
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