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Abstract— Tsunami is a term for disaster where the
seawater rises to the land caused by the great earthquake with
a shallow epicenter in the ocean. Indonesia is vulnerable to the
tsunami; especially in the area where the junction of Eurasia,
Indo-Australia, and Pacific Plates meet. Soon after the
earthquake happened, there is a time interval before a tsunami
to come. The break-time can be used to alert people to evacuate
themselves from the Tsunami. This study proposed a tsunami
early warning system, which autonomously predicts the
potential of tsunami hazard using machine learning techniques.
Bayesian classifier was trained to predict the tsunami potential.
The tsunami training data was taken from the InaTews website;
a national project of Indonesia that involves many institutions,
local or international. InaTews informed the real-time data of
earthquakes and tsunami that happened in Indonesia. The
proposed methods extracted some invariant characteristics
from the data and trained the machine learning classifiers to
predict the potential result; either tsunami or not-tsunami using
three parameters of earthquake: magnitude, epicenter, and
location. The experiment gave an optimistic result; using a
varying number of training data, it gained 92.37% on the
average accuracy rate and 0.98 on the F1 score.

Keywords— bayesian probabilistic classifier, early warning
system, support vector machine, supervised machine learning,
tsunami mitigation

I. INTRODUCTION

“Tsunami” term comes from the Japanese language. It
describes a situation where an enormous sea wave reaches the
land, which may be caused by the great earthquake with a
shallow epicenter in the ocean. The geographical location of
Indonesia is traversed by the confluence of three tectonic
plates, namely: Indo-Australian Plate, Eurasian plate and the
Pacific plate. These plates meet at the seafloor; hence, if a
major earthquake happens with a shallow depth; it potentially
causes a tsunami [1]. Fig. 1 shows a map of Indonesian
potential areas highlighted in red line which are vulnerable to
earthquakes and tsunami.

Fig. 1. The map of Indonesian potential tsunami areas
A massive carthquake with tsunami disasters that

happened in Aceh in 2004 and Palu in 2018 has resulted in a
hundred thousand of victims and property losses. Mitigation
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efforts are required by both national governments as well as
the commumity to reduce the risk of catastrophic earthquakes
and tsunami [2]. One of the mitigation efforts is building the
tsunami early warning system to prevent the risk of higher
losses. Tsunami Early Warning System is a series of complex
systems that involve many stakeholders at international,
regional, national, and community levels [3].

The mitigation action by the Indonesia government is
building the Indonesian Tsunami Early Warning System, or
in short InaTews [4]. InaTews is a national project involving
various institutions in the nation under the coordination of the
Ministry of Research and Technology. InaTews gains the
earthquake data recorded by seismic instruments. The data is
sent to the Tsunami Warning Centre and analyzed by the
InaTews system. The result is classified based on the tsunami
potential. The analytical method used for classification of
tsunami is a Decision Support System (DSS) [4]. This result
is immediately dispersed to the government agencies who are
in charge ofinforming the general public through the warning
sirens, TV, radio, and cable television [3]. Although
seismographic data analysis has been conducted using the
DSS, but it still needs improvement.

Earthquakes are caused by the sudden release of the
carth's energy, being marked by the breaking of rock layers
in the earth's crust. The accumulation of the earthquake
energy is generated from the movement of tectonic plates.
This energy emitted to all directions in the forms of an
carthquake wave, so its effects can be felt up to the surface of
the earth [2]. The results of the earthquake are ground
shaking, liquefaction, soil avalanches, and Tsunami.
Earthquake parameters include the time of the earthquake, the
location of the epicenter, epicenter depth, and the strength of
the earthquake (magnitude) [2].

The true meaning of tsunami is the vertical displacement
of water bodies caused by changes in sea surface [5]. Changes
in a sea-level may occur due to the earthquake centered under
the sea, underwater volcanic eruptions, underwater
landslides, or a meteor hit down the sca. Tsunami waves can
spread in all directions. At sea, a tsunami can travel at the
speed of 500 - 1000 km/h, equivalent to the speed of the
airplane. The wave height in the ocean is probably about one
meter, thus the rate of the wave may not be felt by the sailing
ship on the sea. When approaching the shore, the wave speed
will drop to 30 km/h, but the height has been increased up to
tens of meters. Lacing tsunami waves can go up to tens of
kilometers from shore. Damage and loss are caused by the
blow of water and materials carried by tsunami waves [6].

The carthquake which can generate a tsunami has several
characteristics: the epicenter is located under the sea: the
depth of the epicenter is relatively shallow, less than 70 km;
the magnitude (M) is large (M> 7.0 Richter scale) [2].
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Indonesia is vulnerable to tsunamis, particularly the islands
which directly border with the Eurasian plate, the Indo-
Australian and the Pacific plate, including the Western part
of Sumatra Island, South Java Island, Timor Island, Northern
Papua Island, Sulawesi, and Maluku, and East Part of Borneo
Island.

Previous studies determined the tsunami hazard rating by
using Analytical Hierarchy Process (AHP) [7]. Another
research ranked the tsunami hazard by using the data mining
C 4.5 algorithm [8]. However, the research has lacked
information about tsunami potential caused by the
carthquake. Dilectin and Mercy implemented Tsunami
classification using KNN for real-time data, and automatic
detection of novel class for the outliers [9]. Meanwhile, the
computer vision technique was used to support the Tsunami
Warning System by extracting the tsunami-like wave video
[10]. Wachter, et al. [11] also emphasized the future
challenge of tsunami early warning system, which needed
more improvement, including using a machine learning
algorithm to predict the tsunami potentials.

In this paper, we developed a tsunami early warning
system which autonomously analyzed tsunami potential
using a reliable method of machine learning; Bayesian
Probabilistic Supervised Learning or Bayesian classifier.
Three parameters of an earthquake are used: magnitude, epicenter,
and location to predict the occurrence of a tsunami caused by
an earthquake. The training data was obtained from the
InaTEWS website [4]. It is expected that this system can be
integrated with a seismic recording device so that the
classification can be done in real-time.

II. MATERIALS AND METHODS

Probabilistic Supervised Learning is one of the machine
learning methods based on probabilistic statistical theory. In
supervised learning, there exists a set of training data that has
been labeled with categories or weights for each pattern [12].
One of the Probabilistic Supervised Learning techniques for
pattern recognition is Bayesian Probabilistic Classifier. Itisa
reliable yet simple machine learning techniques to recognize
patierns.

Bayesian Probabilistic Classifier or so-called Bayesian
Classifier utilizes conditional probability theory. It predicts
the probability of the future event based on the past
experience. Many applications implement this algorithm.
Two groups of researchers Pantel and Lin, and Microsoft
Research, introduced a Bayesian statistical method for
anti-spam filters [13]. Some studies were conducted on
tsunami hazard applications [14-15].

A. Bavesian Probabilistic Classifier for Tsunami

Classification
' Let say X represents a sct of attributes, and ¥ represents a
class variable. If the class variable has a non-deterministic
relationship with attributes, then X and ¥ can be treated as
random variables that have a conditionalfjrobability, denoted
by P(Y|.X). This conditional probability is also known as the
posterior probability of ¥ given prior probability P(Y). During
the training phase, it ifnecessary to study the posterior
probability for the entire combination of X' and ¥ based on the
information obtained from the training data. By knowing
these opportunities, test data X" can be classified by finding
the ¥’ class that maximizes the posterior probability P(Y].X).

Bayes Theorem provides a term of posterior probability
P(Y|X) from the prior probability P(Y), conditional class
probability or su-calledlikelih.d)’()ﬂ Y), and evidence P(X).
Eq. 1 formulates the Bayesian Theorem.

PCXIY) p(Y)

P(Y[X)=—; 3

(1)

Bayesian  Probabilistic  Classifier  estimates  the
conditional probability of a class by assuming that attributes
of a class have conditional independent characteristics.
Conditional independent assumption can be expressed in (2).

PXIY =y) =L, P(X,|Y =) )

Each setof data X' = /X7, X, ..., X,/ consists of d attributes.
Let .X, ¥, and Z represent three sets of random variables, X
conditionally ¥ is stated to be conditionally independent
given Z. It can be expressed in (3).

P(X,Y|Z) = P(X|Z).P(Y|Z) (3)

To classify the test data, Bayesian classifier computes the
posterior probability of each class in ¥ using (4). Since P(X)
is constant for every Y, it can be ignored.

_ pmllrxlv)
P(Y|X)= @ (4
For a discrete attribute, conditional probability is
estimated based on the occurrence of X in class ¥. While for
continuous attribute, cfhditional probability is assumed as
the distributions of the training data. Gaussian distribution is
often chosen to represent the class conditional probability for
continuous attributes. The distribution is characterized by
two parameters, namely, mean p and variance o”. For each

class y;, the class conditional probability for attributes x; is:
(xp=py N2

1 29-”.

P(Xi:xih’:yj}:ﬁexp [5]

Parameters u; can be estimated based on the sample mean
of entire training data with label class yy. In the same way, the
sample variance can be estimated from the same training data.

B. Design of Tsunami Classifier

Five major steps in machine learning and pattern
recognition are including data collection, feature selection,
model selection, classifier training, and evaluation. Fig. 2
depicts these stages. Data collection is an important initial
step of the supervised learning method. At this stage,
representative data is collected, the test data is also collected
for classifier testing purpose. The data source is obtained
from the geophysical data from the website
http://inatews.bmkg.go.id. Feature selection is a process to
determine the main characteristics of the data that form two
classes, tsunami, and not-tsunami. Model selection is the
adjustment of Bayesian Classifier parameters for tsunami
detection. Classifier training is feeding the model with the
labeled training data so that the classifier can learn to model
the tsunami prediction. Hence, the performance of the
classifier can be evaluated using evaluation tools such as
accuracy, precision, and recall. We validate the model by
comparing the result with the benchmark data from InaTews.
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Fig. 2. The classification methodology

We collected hundreds of seismic data from the InaTews
website in July 2019, exactly 350 tramning data and 320
testing data. Raw data was a webpage consist of specific
information on ecarthquake occurrence, location point, and
details of earthquake and tsunami potential. The
preprocessing step converted the raw data into a flat-file with
meaningful information for the tsunami classification.

On the feature selection stage, we analyze the determined
characteristics of the earthquake, which may cause a tsunami.
The features must be invariant to distinguish between two
possible categories; earthquake with tsunami potential, and
earthquake with no tsunami potential. We proposed three
main features of the earthquake that influenced tsunami; the
epicenter depth, the magnitude, and the location of the
earthquake. Fig. 3 gives an example of the raw data from
InaTews website, written originally in bahasa language. It
gives information about three tsunami features: 36 Km in
depth: 7.0 SR in magnitude; and the location took place in the
ocean. The depth and magnitude are continuous features
(numeric value), while the location is discrete feature (land or
ocean).

Magaitudo a2 7,0

Tanggal & Wakiu Kejaclian 07-Jul-2019 22:08:42 WIB
Lokasi 054LU-12619 BT
Kedalaman 36 Km

133 lom BaratDaya TERNATE-MALUT

134 km BaratDaya TERNATE-MALUT

140 ke BaratDaya TIDORE-MALUT

153 km BaratD) JLOLO-MALUT
2277 km TimurLaut JAKARTA-INDONESIA

Keterangan Lokasi Gempabumi

Potensi Potens] TSUNAMI utk dirskn pd msyrkt

Fig. 3. An example of raw data taken from the InaTEWS

The next stage is the model design. At this stage, we
designed and formulated the Bayesian Probabilistic Classifier
based on (4) that corresponded to the prediction of tsunami
potential. Eq. 4 can be used as the kernel function in a
probabilistic-based classification problem. Evidence P(X)
can be omitted without changing the meaning. The formula
for the classification of two classes, tsunami and not a
tsunami, are shown on (6) and (7).

P(Y|X) = P(Y1). P(X;|Y1). P(X;|Y1). P(X3|Yy)  (6)
P(Y2|X) = P(YzJ-P(Xde)-P(X2|Y2)-P(X3|F2) (7

where ¥; denotes tsunami, and ¥ denotes not tsunami class
categories. X7, Xo, Xz denote three features: depth, magnitude,
and location, respectively. Eq. 6 computes the posterior
probability of tsunami class P(Y;|X), and (7) computes the
posterior probability of not-tsunami class P(Y>[X). While
likelihood P (Xi| Yi) and P (X> | ¥i) are continuous features
which are obtained from equation 5, and P (Xz | Yi) 1s a
discrete feature that is computed from the occurrence of X;
within the entire training data. The decision is made by
comparing the value of both posteriors. The largest posterior
is selected as the prediction result, as in (8).

P(YTsunamiIX) > P(YNDtTSul’lﬂﬂliIX) (8)

The next stage is the classifier implementation, where the
model that has been designed is implemented. Two phases of
supervised learning are the training phase and the testing
phase. At the training phase, we provided a set of training data
to the classifier so that it can learn and build a classifier model.
At the testing phase, a set of testing data is provided. The
classifier has learned from the data in the previous phase.
Parameters are given as well, including the prior probability
of each class, mean and variance of the continuous feature of
the training data, and the probability of each discrete feature
in training data.

The last stage is the evaluation. Evaluation of system
performance is done by measuring the precision and recall of
the classifier performances by giving a variety size of training
data. At the evaluation stage, we can notice the effect of
training data size on the accuracy of classification. We also
test the classifier with several numbers of testing data. The
results will be compared with the benchmark data (real result
from InaTews source data), and it is used to determine the
performance of the classifier.

II. RESULTS AND DISCUSSION

As a supervised learning method, the training data hold an
important part in the Bayesian classification process. The
data was taken from Indonesia Tsunami Early Warning
System or InaTews website (http://inatews.bmkg. go.id/). The
number of training data was 350, and the testing data was
320. Several experiments using a different number of training
data were performed. The number of training data increased
gradually during the experiment. The results of the
experiment described the effect of the number of training data
to the classifier performance. We observed the F1 score,
which combined precision and recalls vales. F1 score is a
common analysis tool on pattern recognition, the value is
between 0 -1; the greater the value, the better the
performance. F1 score is calculated using (9).

F1 = 2(precision * recall)/(precision + recall) (9)

We also present the accuracy rate of the classifier. The
average accuracy rate (AAR) for all the testing scenarios
using a different number of the training set is 92.37%. It
represents a powerful capability of Bayesian classifier for the
tsunami classification task. Table I describes the results of the
experiment. The number of training data is varying to provide
the model with a different variation of training data numbers.
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TABLE L AVERAGE ACCURACY RATE (ARR)
# Training num. of testing data

data 30 40 50 60 70

10 0.29 0.43 0.83 043 0.39
20 0.67 0.83 0.83 080 0.73
10 0.67 0.80 0.67 074 0.70
40 0.80 0.89 0.83 088 0.82
50 0.80 1.00 0.83 094 0.89
60 0.80 1.00 0.71 094 0.89
70 0.80 1.00 0.83 094 0.89
AAR (%) 9143 | 9357 | 9457 | 91.67 | 9061

In the second scenario, we conducted an experiment using
fixed-size training data with different sizes of testing data
(from 30 to 70 data) to see the classification result. The result
can be seen in Table I1.

TABLE II. THE F1 SCORE

#Test | TP | FP | FN | TN Precision Recall F1
data

10 27 0 1|2 1 0.96 098
40 35 1] 1|4 1 0.97 099
50 43 0 2|35 1 0.96 098
60 51 0 2|7 1 0.96 098
70 60 | 0 3|7 1 0.95 098

We can read from Table 11, which is using 40 numbers of
training data, the classifier has a high precision rate of 1.
There is no false-positive alarm in it. It means that the
classifier does not misclassify any "tsunami” testing data into
the "not-tsunami” class. In other words, the classifier has been
successfully predicted the "tsunami" testing data as it is.
Meanwhile, the recall rate is 0.96 on average. Some
misclassified predictions indicated by the false negative alarm
represents the false classification of some "not- tsunami"
testing data were classified as "tsunami" class. These results
can be explained due to the composition of the training data.
Since we all know that the occurrence of a tsunami disaster is
somehow very rare, the training data consists of imbalance
class categories. Lack of the number of tsunami class data: in
the opposite, significant in the number of not-tsunami class
data. The classifier supposed to learn a wide variety of class
categories so that it can enhance its prediction capability.

Fig. 4 depicts the F1 score for the experiment in Table II.
The maximum value of F-measure is 1. It indicates the high
precision and recall rate. The experiment which uses 40
training data yields an auspicious result, where values of F1
are high for all testing data, and the average F1 score is 0.98.
We also compare the F1 score of our proposed method with
other machine learning methods using Support Vector
Machine (SVM) as the classifier. Under the same training-
testing data, SVM got 0.97 of Fl score. Meanwhile, our
proposed Bayesian classifier got 0.98 of the average F1 score.
Thus, it implies that the proposed method demonstrates a high
classification performance.

0.99
0.99
0.98

20.98
20.98

7098
0.98
0.97
0.97
0.97

30 40 50 60 70

Fig. 4. Graphic of F1 score using 40 testing data

IV. CONCLUSION

The output of the proposed model is tsunami prediction
from the earthquake event. Based on the implementation
results, the Bayesian Probabilistic Classifier for tsunami early
warning system has revealed high-quality classification
results, indicated by the high accuracy and F1 score. To some
extent, this research is dealing with imbalanced training data,
which provides less information about the occurrence of
some classes. Since the occurrence of tsunami is rare to
compare to that of not-tsunami events. In supervised learning,
we need to provide a good quality training data; balance in
each class to enhance the performance of the classifier. In the
future, this study still needs more improvements. It can be
done by adding more features, such as the distance from the
epicenter to the shoreline, to increase the performance of the
classifier.
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