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Abstract
Demand-controlled ventilation (DCV) is commonly impl

nted to provide variable amounts of
outdoor air according to an internal ventilation demand. The objective of the present study is to
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investigate the applicability and the performance of occupancy-based DCV schemes in comparison
with time-based and COrbased DCV schemes. To do this, we apply the occupancy estimation
method by the Bayes theorem to control the ventilation rate of an office building in real-time. We
investigated six cases in total (two cases for each control scheme). Experiments were conducted in
a small office room with controllable ventilation equipment and relevant sensors. The observed
results indicated that the occupancy-based schemes relying on Bayes theorem could be applied
successfully to perform continuous control of ventilation rates without causing recursive problems.
Additionally, we discussed the time delays associated with the control procedure, including dispersion
time, sensor-response time, and data processing time. Finally, we compared the performance of

ventilation control
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provided the best conformity to the ASHRAE standard among the analyzed schemes.

1 Introduction

In recent years, the global awareness of the environmental
impact and exhaustion of energy resources has increased
due to a considerable augmentation in energy use. In general,
heating, ventilation, and air-conditioning (HVAC) systems
consume the largest amount of energy in buildings in most
developed countries, constituting a sector that exceeds any
other in terms of energy consumption (Pérez-Lombard et al.
2008). This issue is unavoidable as most people demand better
services in buildings, thereby increasing energy consumption.
Accordingly, increasing attention has been devoted on the
ways to operate buildings establishing efficient energy use,
while simultaneously maintaining a comfortable indoor
environment. Demand-controlled ventilation (DCV) has
been introduced as one of the energy-efficient operation
methods, in which the ventilation rate is adjusted based
on occupancy or only when needed (Taylor 2006). Several
studies have proved the efficiency of this method (Erickson

E-mail: hhan@kookmin.ac kr

et al. 2014; Parsons 2014; Schibuola et al. 2018; O'Neill et al.

2020). Three primary control strategies, namely, schedule-
based, CO; level-based, and occupancy-based ones, are
commonly used to implement demand management in DCV
systems.

Schedule-based DCV is defined as a straightforward way
of regulating the outdoor airflow rate. If daily occupancy
patterns can be identified specifically, a programmable
schedule can be set automatically to adjust fangpr dampers
accordingly (Labeodan et al. 2015). Altcrnativclyr,]e
Society of Heating, Refrigerating, and Air Conditioning
Engineers (ASHRAE) Standard 90.1-2004 (ASHRAE 2004)
provides a generic occupancy schedule for different building
types. This simple and low-cost controlling method allows
significantly saving energy in HVAC facilities, assuming
that it is appropriately implemented (Murphy and Maldeis
2009; Duarte 2013). However, schedule-based DCV may
be unsuitable in buildings with unpredictable occupancy
patterns.
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List of symbols

A floor area (m?)

C CO; concentration (ppm)

Cra maximum set-point indoor CO, concentration in
Case 4 (ppm)

Chin minimum set-point indoor CO; concentration in
Case 4 (ppm)

Cy measured indoor CO; concentration in Case 4 (ppm)

Caa CO; supply outdoor concentration (ppm)

m CO; generation rate per person (g/(min-person))

n number of data points

N number of occupants (person)

Ne«  estimated number of occupants (person)

Naa tual number of occupants (person)

qa outdoor airflow rate required per unit area in Case 6
(L/(s:m?))

qw outdoor airflow rate required per person in Case 6
(L/(s-person))

qn outdoor airflow rate required per person in Case 5
(L/(s-person))

Q ventilation rate (L/s)

Qua  maximum set-point ventilation rate in Case 4 (L/s)

Quin  minimum set-point ventilation rate in Case 4 (L/s)

Qy people outdoor airflow rate (L/s)

Qs area outdoor airflow rate (L/s)
R’ (T) normalized cross-correlation
t time (min)

T time delay (min)

X variable proposal

N (s, 0;}) Gaussian distribution

i mean of variable prior distribution

My mean of CO, generation rate per person prior dis-
tribution (g/(min-person))

Uy mean of number of occupants prior distribution
(person)

Ha mean of ventilation rate prior distribution (L/s)

Usa mean of CO,; supply outdoor concentration prior
distribution (ppm)

o variant of variable prior distribution

o; standard deviation of variable prior distribution

o, standard deviation of CO» generation rate per person
prior distribution (g/(min-person))

oy standard deviation of number of occupants prior
distribution (person)

ag standard deviation of ventilation rate prior distribu-
tion (L/s)

Osa standard deviation of CO: supply outdoor concentra-

tion prior distribution (ppm)

The indoor CO; level can serve as an appropriate indicator
of human bioeffluents, and accordingly, of the occupancy
level. On this basis, CO:-level-based DCV has been widely
applied to regulate the supply of outdoor air (Taylor 2006;
Shriram and Ramamurthy 2019). Two control strategies
correspond to this mode, namely, proportional or exponential
control (ASHRAE 2007; Nassif 2012) and set-point control
(Schibuola et al. 2018). The advantages and limitations
of CO;-level-based DCV have been actively discussed.
Specifically, it has been argued that CO; is not a principal
contaminant to focus on, and that the supply of outdoor air
does not address non-occupant generated contaminants.

In most commercial and residential buildings, ventilation
demands generally occur due to occupant- and building-
related components. The ventilation rate procedure introduced
by ASHRAE Standard 62.1 implies that the ventilation rate
should be proportional to the number of occupants and
floor area (ASHARE 2013). As occupancy can change over
time, the ventilation rate should be adjusted accordingly to
maximize efficiency.

Various methods have been developed to determine
occupancy. Direct-sensing methods rely on the use of passive
infrared sensors (Andrews et al. 2020), radio-frequency

identification tags (Zhou and Shi 2011; Li et al. 2012), and
video cameras (Liu et al. 2013; Dino et al. 2019). Indirect-
sensing methods are based on the measurements of CO,,
sound, humidity, and temperature are preferable over direct-
sensing methods in spite of privacy concerns. Among the
indirect measures of occupancy, CO, concentration has the
highest correlation with the number of occupants (Zhang
et al. 2012). However, translating CO, concentration into
occupancy levels is challenging, as mismatches exist in
response mechanisms associated with changes in CO,
concentration and occupancy.

A widely used and straightforward methods to determine
the occupancy level from CO, concentration is based on
physical models. However, at present, the research focused
on this subject is limited to the detection of occupancy
present (Wang and Jin 1998; Cali et al. 2015) and estimating
the number of occupants in the order of tens (Wang and
Jin, 1998; Sun et al. 2011). The high accuracy of estimation
in the case of a low occupancy level is costly and difficult, but
not impossible. It can be achieved by overcoming various
sensor-reading uncertainties, such as maintaining the accuracy
of the CO; and airflow measurements, establishing the correct
use of CO, generation rates, and providing well-mixed indoor
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air (ASHRAE 2007; ASTM 2012).

In addition to the use of phy al models, statistical
methods are also typically utilized to estimate the number
of occupants based on CO: levels, including neural networks
(Alam et al. 2017), extreme learning machine (Jiang et al.
2016), and support vector machine (Ebadat et al. 2013).
The literature reports that the advantages of statistical models
include high estimation accuracy, less computational time,
and the absence of restrictions corresponding to the physical
characteristics of building space (Zuraimi et al. 2017).
However, developing statistical models requires large
databases to perform preliminary diagnostics that includes
providing a means for occupancy validation (Rahman and
Han 2016).

Recently, the Bayesian Markov chain Monte Carlo
(MCMC) method has been widely used to solve problems in
various engineering fields, specifically, in estimation problem
and uncertainty quantification (Bardsley 2012; Wang et al.
2017). Based on a probabilistic technique relying on observed
parameters and a prior belief in a physical model, Bayesian
MCMC can be used to obtain a characterization guncer-
tainties (Wang and Zabaras 2004). However, only a limited
number of related studies have been introduced in the field
of HVAC (Shin and Han 2015; Rahman and Han 2018).
They have proposed applying the Bayesian MCMC method
to uncertainty issues in occupancy estimation for given or
known airflow rates.

The present study is performed as an extension of
the previous research works. It is aimed at applying the
occupancy estimation method to real-time DCV cases in an
office building. Occupancy estimation relies on the indoor
CO: concentration, and the ventilation rate is controlled
according to the estimated occupancy in a real-time manner.
The proposed control system can be classified as a feedback-
loop that transmits a portion of the output to the next
operation. Therefore, when the system has a circular (recursive)
logicgastin 1999), a failure of system control may occur.
The Gbjective of the present study is to investigate the
applicability and the control characteristics of the occupancy-
based DCV algorithm in comparison with other time-based
and direct CO,-based DCV schemes. Moreover, we compare
the performance of the sidered ventilation schemes
in terms of the outputted indoor CO; levels and the total
ventilation-air volume.

2 Methodology
2.1 Experimental setup
In the present study, experiments were conducted in an

office of a university building with a floor area and a room
volume of approximately 37 m? and 97 m?, respectively. Air

ducts in the ceiling were connected using supply and return
fans. The supply and return diffuser grills were deployed at
the opposite corners of the room.
and velocity meters were installed m the supply and return
ducts, as shown in Figure 1. The other CO, sensor was
installed in the center of the room 2 m above the floor. The
CO; sensors were calibrated using two standard gases (500

arbon dioxide sensors

and 2,000 ppm) with the accuracy of +3% over 0-5,000 ppm.
The airflow rates inside the ducts were measured based on
the data from the velocity meters (hot-wire anemometers)
using the logarithmic Chebyshev method (ISO 2008). We
acquired the ventilation rate by averaging the two airflow
rates measured in the supply and return ductgyh laser-beam
sensor installed at a door frame was utilized to estimate the
actual number of occupants in the room to verify the accuracy
of the proposed estimation algorithm. Movements were
detected whenever a beam between two laser sensors was
interrupted by a person walking through. The sensor outputs
were stored in the data acquisition storage with one-minute
intervals. Figure 2 represents the sensor and control diagram.
The data from the indoor-CO: concentration sensors were
averaged over 10 min for the purpose of smoothing.

CO; sensor
Velocity sansor
HRY

Laser beam sensor

Monitoring panel
DAZ and PC

Supply grill
T

CO: sensor
Return grill —

€05 sensor = |

Fig.1 Experimental setup

Fig.2 Sensorand control diagram

2.2 Occupancy estimation

A physical model derived from the CO, mass-balance equation
was implemented in the proposed occupancy estimation
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approach, adopting the Bayasian MCMC method introduced
by Shin and Han (2015). Several assumptions were specified
according to the conditions of the observed room. One
assumption corresponded to the distribution function with
the assumed Gaussian distribution, formulated as follows:

[X—p s

X~N{p.o!)= L o = (1)

A 210}

where X was a proposal value; 4 and ¢ were the mean and

standard deviation of specific variables, respectively, con-
cerning the occupant CO, generation rate per person (),
ventilation rate (Q), CO, supply outdoor concentration
(Csa), and the number of occupants (N). It should be noted
that 4 and o were derived based on probable observations
and measurements by approximating true values as closely
as possible. The mean of s (i, ) was set according to the
present occupant condition, a factor that was equivalent
to a typical metabolic level for office work based on the
average DuBois surface area of occupants. The standard
deviation of (o, ) was assumed to be 30% of the mean
or equal to the metabolic difference between sitting quietly
and walking slowly (Persily and de Jonge, 2017). The mean
of Q (o) was set according to the measured level of CO: in
the duct system, and the standard deviation was assumed
to be within typical building infiltration values and the
measurement accuracy. The prior concentration of outdoor
(or background) CO, was set to a typical local outdoor
concentration according to the standard deviation observed
from the recorded data. The mean of N (uy) was obtained
based on the previous state of posterior N with the assumed
standard deviation of 30%. Here, the standard deviation
was important in determining the sensitivity of occupancy
estimation: a broad range of occupancy required a large
standard deviation, and vice versa. An overview of the mean
and standard deviation of variables is provided in Table 1.

The Bayesian MCMC algorithm was implemented using
the LabView software, and the variables were set accordingly.
The timestep of the Bayesian calculation was a three-minute
time interval and was repeated during every timestep. During
this calculation, 10,000 iterations were executed with a burn-in
period set at 5,000 iterations to discard a portion of the initial
iterations.

The error between the estimated number of occupants

Table 1 Mean and standard deviation of variables

Variable (i) i o (%)
i 0.554 g/(min-person) 30
Q () measurement 30
Csa 420 ppm 5
N Nat the current state 30

and the reference could be expressed using the following
equation:

SN -N. )P =
error =4/=~——— N (2)
n

where N.. and N,. denoted the estimated and the actual
numbers of occupants, respectively, while # and N was the
number of data points and the average of the actual number
of occupants during observed periods, respectively.

2.3 Ventilation control schemes

Three groups of ventilation schemes were considered in
this study. Each group comprised two control cases, as
shown in Table 2. Case 1 was defined as a reference case,
which, according to the design standard for six occupants
in Korea, implied maintaining a constant airflow rate of
41.6 L/s (150 CMH). In this scheme, a fan was controlled
according to a schedule: switching on at 9:00 AM and
switching off at 9:00 PM. Case 2 was the simplest case
among the occupant-based control schemes, it implied using
the information about the presence of occupants but not
their count. The fan was controlled at a constant rate and was
switched on when occupants were present and switched off
whenever the space was vacant.

In Cases 3 and 4, the indoor CO; level was employed
to control the ventilation rate. In Case 3, the fan was set
on and off based on the CO, level. The fan was on at its
maximum design rate when the CO; level reached an upper
limit of 900 ppm and continued to supply outdoor air until
the CO; level dropped to the lower limit of 700 ppm. This
upper limit was defined to prevent the CO, concentration
from reaching 1,000 ppm. The difference in the upper and
lower limits was called a dead band to avoid short-cycle
oscillations in the system. According to (Shell et al. 1998),
the ventilation rate in Case 4 was set to be proportional to
the CO, concentration. As the indoor CO, concentration
increased, the ventilation rate increased gradually until
reaching its maximum at the limit concentration of
1000 ppm.

The last group of the implemented ventilation schemes
corresponded to occupant-based control. In Case 5, the
ventilation rate was set as proportional to the number of
occupants, with 6.96 L/s (25 CMH) per person until it
reached the maximum fan capacity. In Case 6, the ventilation
rate was set according to the ASHRAE 62.1 standard, which
accounted for the occupant ventilation needs (Qy) and also
the ventilation required for building off-gassing (Q.). The
occupancy component of the ventilation rate was designed
as follows: the airflow rate required per person (g») times
the occupancy count (N). The building component was
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Table 2 Ventilation schemes

Case  Group of control Ventilation control Description Logic graph
Qua T
Scheduled control
1 sochieculed controt> Scheduled timer from 9 AM to 9 PM
Constant airflow p
b t;
Time-based
2 <Onjoff control> Fan ONifN>1and OFE if N=0
Based on N ¢
N=0 N>l
Qu
<On/off control> .
3 Based on C 700 ppm < € < 900 ppm . O
COz-based
'y
Qs 1
ional o C,—C_ .
' <Proportional control> Q=2 (Qu. ~ Qua) + Qs
According to C Coze — Con . C
L-\'ll.ll L-\'llul'
Qua
5 <Pmpnrlim_-m] cnnllml> Q=qN T
According to N
I\r
) N
Occupant-based
<Combined control> /—
=0, + =qgyN+g,A
6 Based on both N and floor area Q= +Q=ax 9 dail N
; . .
N

defined as the airflow rate required per unit area (q.) times
the floor area (A). According to the present experimental
conditions, Qy and Q. were determined according to
Table 6-1 provided in the ASHRAE Standard 62.1 (ASHRAE
2013) at 2.5 L/s per person and 0.3 L/s m? respectively.
Detailed information about the considered ventilation cases
and logic graphs can be found in Table 2.

In the occupant-based schemes, the ventilation rate was
regulated by the Bayesian output of the estimated number
of occupants. This feedback process relationship is illustrated
in Figure 3. The Bayesian MCMC algorithm was developed
using LabView, and therefore, the measurement, estimation
and control were organized using a unified interface.

Sensor input

Bayesian o | Estimated N
r MCMC T (integer)
|
! I
L _________ Ventilation o
scheme

Fig. 3 Block diagram describing the occupant-based ventilation
control

3 Results and discussion

3.1 Occupancy estimation

Figure 4 represents the diagnostic plot of posterior N derived
at a timestep of the Bayesian MCMC calculation. This plot
illustrates the trace plot of the proposed value of N and N
accepted after 10,000 iterations. The proposed N could be
accepted or rejected according to the Metropolis-Hastings
probability.

Typical results of the measured indoor CO, concentration
and the actual occupancy are represented in Figure 5. They
are superimposed with the estimated results by Bayesian
posterior with red dots for the constant and varying airflow
conditions. The concentration increased and decreased as
occupants moved in and out of the room. The estimated
results conformed well to the actual occupancy. The error
of the varying flow condition (43.5%) was slightly greater
than the constant flow condition (33.0%). This was because
the airflow rate was neither constant nor unknown but
also varied as a result of self-control recurrently driven
by airflow rates. The discrepancy between the actual and
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Proposal N

)
o
£ Accepted N
2
=
5
T
)
8
a
0
0 5000
Iteration

Fig. 4 Diagnostic plot of posterior (a) trace and (b) distribution
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(b) Varying airflow rate

Fig. 5 Occupancy estimation for the constant and varying airflow rate conditions

estimated values of occupancy could be attributed to
various uncertainties and the time required to complete the
estimation process. In general, it could be observed that the
dots representing the estimated occupancy shifted slightly
to the right compared with the line graphs representing the
actual occupancy.
Quantitative analysis on time delay was conducted to
d correlation between two datasets. Autocorrelation was
defined as the correlation between a signal and a delayed
copy of itself as a
was a measure of similarity between two different signals as

ction of delay, whereas cross-correlation

a function of time delay T. Normalized cross-correlations
could be obtained between the two datasets representing
the estimated and actual occupant numbers according
to Eq. (3). Normalized cross-correlation was calculated

110 T T T T T

N_Nesl Correlation

&
5
3
g
&
o
A
]
2
< 0.95 -
= Case * CageZ
Cased v Cased
CaseS < Caseb
.m0 b : L . s L J
10 m an 40 50 [

Time delay, T {min)

(a) Nuc-New

according to Barnea and Silverman (1972) as follows:

RE(T):.er(r)‘Nm(r+T)dr )
fNac[(r)’Nm(r)dt

Figure 6(a) shows the results of measuring cross-
correlation between the actual and estimated numbers
of occupants corresponding to various airflow conditions,
including six cases (each case had a duration of 3 days).
The maximum correlations occurred in the narrow range
of 20-25 min in all cases. Time lags indicated the total
response time in occupancy estimation in the system,
comprising three parts: dispersion time, sensor-response
time, and data-processing time. The dispersion time was
the time required for CO; to reach a sensor after a person

1.08 - - r T T
N-C Carrelation

104 1
e L CL LT T TRR

P T P,

e wares
'i;:;“uui“.___ A g

Cross-Correlation,

. '.»‘3 30- 45

= Casel Casez = m
s+ Cased v Cased
Caseb

1 L L 1 L .
10 il an 40 80 60

Casel —

Time delay, T {min)

(b) N..-CO; concentration

Fig. 6 Cross correlations between (a) the actual and estimated occupancies and (b) occupancy and CO: concentration in six cases
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entering the room. This depended on the time constant of
the room, which was related to the volume of the room,
airflow characteristics, and the relative distance of a sensor
from the source. The sensor-response time could be found
in sensor specifications. It depended on the type of a sensor
and its characteristics. In the conducted experiments,
the response time was within a few minutes. Finally, the
data-processing time was defined as the time required
for dynamic measurement and the computation time for
Bayesian iterations. Dynamic measurements were required
to monitor the trends in CO; changes. In the present study,
the measurement interval was equal to 1 min, and three
timesteps were executed to perform the dynamic measurements
of CO; variations. The value at each timestep was averaged
over 10 minute intervals in order to smooth out the con-
centration fluctuations. Compared with the time for dynamic
measurements, the computation time for data smoothing
and Bayesian iterations was deemed negligible.

The time required for the physical dispersion of CO, was
the main reason of time lag in ventilation control. Figure 6(b)
shows the correlation between the actual occupancy and
CO; concentration. We noted that the time delay of a room
concentration response of 30-45 minutes was even greater
than that of occupancy estimation. This was confirmed by
the correlation observed between the estimated occupancy
and CO, concentration, as shown in Figure 7. Maximum
delays occurred in the range of 8-20 min, meaning that the
estimated N advanced CO, response by that amount of
time. This is explained in the schematic shown in Figure 8.
The Bayesian estimation method uses the initial changes
in concentration before CO, builds up in the room. We
concluded that there was a time delay in occupant-based
control; however, it was shorter than that of concentration-
base control.

Earlier studies have reported the time delays of 10-20
min in CO; detection (Meyn et al. 2009), those of 30 min

1.02 T T T T T
N_,-C Correlation
L11
L LT L LR -
& gy,
& 1,00 pul®ET Ty lou._. . 4
- "
-% N ""v.-,,"_ L [TPPP)
3 8-20 = vy
7 C hay Try,
2 oo i b v
=] [ A
(5] “u
»— Casel *—Case? A
Cased v— Cased fay,
Case§ —<— Caseb =
nas L L " I I I J
0 10 20 30 40 50 60

Time delay, T (min)

Fig. 7 Cross correlations between the estimated occupancy and
CO: concentration

1493
N-control Nasr-control  C-control
time
L )
g time
|
Bayesian
N processing time c
e —

Physical response time

Fig.8 Schematic graph illustrating the time required for Bayesian
processing and obtaining a physical response of concentration
dispersion

in CO: dispersion (Labeodan et al. 2015), and the delays
of 20 and 45 min reaching the steady state in CO, detection
(Dedesko et al. 2015; Zuraimi et al. 2017). It was demonstrated
that airflow control based on CO,-based occupancy detection
exhibited significant delays (Wang and Jin 1998; Wang et al.
2003; Luet al. 2011).

3.2 Effect of ventilation schemes

Figure 9 represents the real-time ventilation rates along with
the actual number of occupants and CO, concentrations
for all analyzed ventilation control schemes. Case 1 provided
a constant airflow rate that was adequate for six people; this
rate was excessive when the room was not fully occupied.
This control scheme could lead to over-ventilation when
the number of occupants was less than design capacity. The
ventilation rate pattern of Case 2 was nearly the same as in
Case 1, except for the fact that the ventilation was occasionally
shut off when the room was unoccupied.

CO; concentration did not reach 1000 ppm except for
a short period on day 3 in Case 3. These spikes could have
occurred as occupants entered the room at almost the same
time, and therefore, the level of CO, augmented faster
than its dilution by ventilation. The advantage of Case 4
over Case 3 was that the fan rate was proportional to CO,
concentration, and therefore, the fan did not wait for a
considerable increase in CO» concentration to build up. The
ventilation pattern of Case 4 matches the CO, concentration
profile. However, this control scheme implied keeping the
fan on until CO; concentration declined after the room was
vacated completely.

The ventilation pattern considered in Case 5 was
represented by demand, meaning that the Bayesian method
estimated the number of occupants and controlled the
ventilation rate accordingly. Recursive problems did not

arise in the feedback loop control. Although the algorithm




1494

Rahman and Han / Building Simulation / Vol. 14, No. 5

‘g 100 12680
g ——Actual accupancy = CO, cancentration Case 1 =
s 12 Venlation rte ® g 100 &
2 9 5 & 750 %
?; s
s 6 w2 sp 8
2 — e =
1 3 &
£ 2 = =0 g
=z
. ] . " o
12am 12 pm 12 am 1Zpm 12 am 12 pm 12 am
£ 100 1280
i ——Aciudl Qoouganty  —— oo, concantration Case 2 z
s Vensation rate w3 1000 B
£ = e
2 8 5 £ o 8
: :
£
5 & 40 w0 8
5 3 g
E] 8 |
E ° o = [0 o
= o
. . . ‘o [
Bam 12 pm 12 am 12pm 12 am 12gm 12am
‘g 100 1250
g = At accuganty  —— CO, cancentatian Case 3 'E
£ 12 Vensistion rate o oE 1000 &
29 £ o £
g :
b g s 8
2 5 3
E 3 o = 250 g
=z
o o
Igam 12 pm 12 am 12 pm 12 am 12 pm 12 am
T 18 a0 1280
E ——Actusl OCCUDBALY = GO, cancentratian Case 4 =
2 12 Venslation rte ® 3 100 &
z = -
2 9 £ 750 g
§ g £
L6 w0 sa0
2 & 3
E 3 2 = 250 g
= \-——_ o B
12am 12 pm 12 am 12pm 1Zam 12 pm 12 am
T 15 100 1260
% ——Actusl accupaney  —— CO, concantration Case 5 =
s 12 Venslation rte ® 3 100 §
& H H
2 9 60 £ 50 8
2 £ g
E w & sa0
5 E g
2 B "
E 3 o = 250 d
=
™ I (W1 B
12am 12 pm 12 am 12pm 12am 12 pm 12 am
‘g 100 1280
g ——Actual oceupancy  — CO, concanration Case § =
212 Venlation rte ® 3 100 §
2 0 50 & 750 %
: | o}
5 & 40 F o §
2 E| g
K] B 3
E ® o 2 =0 g
=z
" - . o [
Igam 12 pm 12 am 12 pm 12 am 12 pm 12 am

Fig. 9 CO; concentration and ventilation rate measurement in the six analyzed ventilation control cases

required informative priors, an incorrect estimation at one
step did not significantly affect the calculatio the next
step. Similarly as in Case 5, ventilation control based on the
estimated number of occupants was successfully realized
in Case 6. Moreover, in Case 6, the supply of outdoor air
was modulated according to the requirements of occupants
and the building area. In addition, the minimum airflow
rate was supplied at night when occupants were absent
so that the possible augmentation of the concentration of
contaminants from building materials could be prevented.
This scheme implied that the airflow rate at the maximum
capacity was maintained at a value slightly smaller than
that in Case 5.

The performance estimates of the considered ventilation
schemes are summarized in Table 3. The average values and
standard deviations are shown in the table corresponding
to occupied periods. Over three days, the average occupancy
density was similar among all cases. Furthermore, the
average concentrations were comparable in all cases, being
maintained well below 1,000 ppm. With respect to maximum
concentration, Case 3 and Case 6 exhibited the values
slightly greater than 1,000 ppm for a short period of time.
The average ventilation rates in Case 1 and Case 2 were
almost twice greater that those observed in Cases 5 and 6
during an occupied period. The ventilation rate and the
total ventilation-air volume indicated the power consumption
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Table 3 Summary of results for the analyzed ventilation schemes during occupied period
t-control C-control N-control
Variable Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Average occupancy (person) 27413 2.641.3 25+1.2 28414 27412 2.6+1.2
Average indoor CO; cone. (ppm) 762131 7224114 767+125 750113 778122 B00+138
Maximum indoor CO; cone. (ppm) 966 973 1057 961 997 1068
]_)uily average ventilation rate (L/s) 39.5%7.2 39.448.8 22.7+20.1 295473 17.32£10.1 20.245.2
Ave. ventilation rate per person (L/s per person) 14.4 15.0 9.0 10.4 6.5 77
Total ventilation air volume (m!.’duy) 1440 1716 958 1053 718 939

of the fan and the heating/cooling loads according to air
changes. In this table, the average ventilation rate per person
is defined as the average ventilation rate divided by the
average occupancy, which is equivalent to the amount of
outdoor air received per person. Case 5 exhibited the lowest
average ventilation rate per person, followed by Case 6 and
Case 3. Although Case 3 returned a fairly low ventilation
rate, it was associated with two major drawbacks. The
ventilation performance would decrease with the degradation
of sensors, as the ventilation rate is directly related to the
absolute CO, level. The estimation of occupancy by the
Bayes method is relatively insensitive to the degradation of
sensors, since it monitors the relative trends in CO; changes.
Moreover, indoor pollutants other than CO, are also relevant
to indoor air quality and may not be vented out by a system
that considers only CO: concentration as input.

Figure 10 shows the ventilation rates derived from the
reference ventilation rate of the ASHRAE 62.1 standard.
The shaded area in the figure illustrates the supply-air
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Fig. 10 Ventilation rates in the analyzed schemes subtracted from
the ventilation rate of the ASHRAE 62.1 Standard

volume, while the areas below and above the x-axis indicate
whether the room is under- or over-ventilated, respectively.
It was noted that the occupant-based control schemes
(Cases 5 and 6) produced the smallest shaded area, specifically,
in Case 6, which almost fully complied with the standard.
However, there was a considerable shaded area below the
x-axis in Case 5, as the ventilation was zero when the building
was vacant, which would degrade IAQ overnight. Case 1
represented the widest shaded area among the considered
schemes. In addition, even though Case 2 was occupant-
based, it relied only on the occupancy but not on the number
of occupants, so it often resulted in the over-ventilation of
the space.

Although Cases 3 and 4 were both based on CO,
concentration measurements, they were rather different
in terms of performance. As Case 3 did not account for
a gradual increase in CO, levels that followed gradual
augmentation in occupancy, the profile did not comply
with that of the standard. However, Cases 4 and 5 exhibited
similar patterns with respect to each other, as the ventilation
rate was defined proportionally to their indoor variables.

4 Conclusions and futher work

In the present paper, we realized ventilation control based

on real-time occupancy estimation in a small-scale fo

building. The Bayesian MCMC algorithm was employed to
estimate the number of occupants based on the measured

CO, concentration and a current ventilation rate. The DCV

characteristics were compared among several alternative

control schemes, including the time-based and concentration-
based ones. From the obtained results, we outlined the
following conclusions:

1) Real-time ventilation control based on the estimated
occupancy could be successfully applied to an office
without causing any recursive problems. The estimated
occupancy conformed well to the actual occupancy within
a reasonable range (43.5%). Estimation errors were caused
by fluctuations and uncertainty in CO, measurements
and time delays in the dynamic Bayesian process.
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Time delays in occupancy estimation were found to be
approximately 20-25 min, including the physical response
time and the data-processing time in the considered
experimental setup. Therefore, further efforts are required
to reduce the uncertainty in the estimated occupancy by
investigating the time delays associated with the Bayesian
algorithm.

2) The occupancy-based ventilation control schemes were
compared with the time-based and concentration-based
ones. The occupancy-based schemes were found to be
effective in terms of the total ventilation-air volume
compared with the analyzed alternative schemes. Moreover,
they exhibited less time delay compared with the con-
centration-based schemes. The occupancy-proportional
scheme (Case 5) required a slightly lower ventilation rate
in terms of controlling indoor CO; concentration; however,
the ASHRAE scheme (Case 6) was preferable with respect
to controlling unknown indoor contaminants by supplying
the minimum ventilation rate.

Further research work is required to improve the
Bayesian estimation method and the ventilation control
algorithm to reduce the estimation errors and control time
delays aiming to establish more robust and durable demand
control ventilation system that would be applicable to a
majority of building applications.
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