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Abstract: Manual classification of sleep stage is a time-consuming but necessary step in the diagnosis
and treatment of sleep disorders, and its automation has been an area of active study. The previous
works have shown that low dimensional fast Fourier transform (FFT) feamres@:l many machine
learning algorithms have m‘l applied. In this paper, we demonstrate utilization of features extracted
from EEG signals via FFT fo improve the performance of automated sleep stage classification through
machin@Earning methods. Unlike previous works using FFT, we incorporated thousands of FFT
features in order to classify tlffisleep stages into 2-6 classes. Using the expanded version of Sleep-EDF
dataset with 61 recordings, our method outperformed other state-of-the art methods. This result
indicates that high dimensional FFT i atures in combination with a simple feature selection is effective
for the improvement of automated sleep stage classification.

Keywords: automatic sleep stage classification; electroencephalogram; fast Fourier transform

1. Introduction

Sleep is one of the basic physiological needs, and an important part of life. A typical human
spends one-third of his lifetime sleeping. Lack of sleep may cause health issues, influence mood,
and interfere with cognitive performance [1,2]. Examination of sleep is usually pmr'med with the aid
of polysomnography (PSG). PSG is used to examine multiple parameters that may be useful in the
diagnosis of sleep disorders, or may be analyzed in pursuit of a deeper understanding of sleep itself.
Hollan, Dement, and Raynal introduced the term Polysomnography in 1974, PSG is performed using
an electronic device equipped to monitor multiple physiologic parameters during sleep by recording
corresponding electrophysiological signals, for instance: from the brain via electroencephalogram
(EEG), from the eyes via electrooculogram (EOG), from the skeletal muscles via electromyogram (EMG),
and from the heart via electrocardiogram (ECG) [3]. To collect this data, recording devices are attached
to the relevant locations of the body, typically including three EEG electrodes, one EMG electrode and
two EOG electrodes. ECG is also a compulsory component of PSG. Additionally, the monitoring of
respiratory functions may be desired in the diagnosis of respiratory disorders such as sleep apnea and
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require the addition of other tools applied in conjunction with the EEG electrodes, most often a pulse
oximeter, oral thermometer, nasal cannula, thoracic and abdominal belt, and a throat microphone [4,5].

Figure 1 represents the standard system used for measuring the EEG signal, termed as the
2{) system, in which the minimum number of electrodes used is 21. This method regulates the
physical placement and designations of electrodes on the scalp. The head is divided into proportions
from important sites of the skgfj| so that all areas of the brain are adequately covered. The label of
10-20 indicates that the actual distances between neighboring electrodes are either 10% or 20% of the
distance from the nasion (front side of the head/anteriorly) to the inion (back side of the head/posteriorly)
between the ears and§Ejse where electrode points are chosen. Generally, electrodes marked with even
numbers are placed on the right side of the he@nd those marked with odd numbers on the left
side. The electrodes arflso marked with letters to represent their locations relative to the anatomical
divisions of the brain: F (frontal), C (central), T (temporal), P’ (parietal), O (occipital), and Fp (Frontal
pole). A subscript z is used to mark the midline electrodes as zero.

Nasion

{Front
-
p I
- ~u

Back

Figure 1. Electrodes placement of electroencephalogram (EEG) measurement [4] (reproduced with
permission by Elsevier (License Number 4781771458692)).

The electric signal in the brain is determined by measuring the difference of the electric activity
between the two electrodes over a period of time. As it propagates, the signal gradually decays with
distance from the source. Finally, the signal has a decreased value since only one of the parallel
combinations of electrodes gives precise measurement [4,6].

EEG waveforms have several kinds of thythms. These rhythms are remarkably useful for
classification annotation of sleep score as recurclemy PSG. In anormal EEG, we differentiate these
rhythms into five frequency bands. Table 1 lists the frequency and amplitude ranges of these bands [4,7]

Table 1. Frequency and amplitude range of the EEG signal.

Bands Frequencies (Hz) Amplitude (uV)

Delta 0.5-3.5 20-100
Theta 3.5-7.5 10
Alpha 7.5-12 2-100
Beta 12-30 5-10
Gamma >31 -

Human gpep consists of cyclic stages, and the sleep stages are essential sections of activity
during sleep. Three main stages of the sleep cycle are awake, non-REM (NREM) sleep, and rapiffgye
movement (REM) sleep. The NREM phase is also called dreamless sleep: breathing is slow and heart
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rate and blood pressure are normal. NREM sleep eventually deepens and leads to REM sleep. The REM
stage occurs most often while dreaming. At the time, the body goes into a temporary paralysis to
prevent it from acting out these dreams. However, during REM sleep the eyes move quickly back and
forth. The absence of one of these stages or the overabundance of another can lead to the diagnosis of
numerous conditions ranging from sleep apnea, hypersomnia, insomnia, or sleep talking [8].
ere are two recognized standards for interpreting sleep stages based on sleep recordings:

the Rechtschaffen and Kales (R & K) criteria and the American Academy of Sleep Medicine (AASM)
criteria. The Rm( recommendations classify sleep into seven discrete stages: wake/wakefulness,
S1/drowsiness, S2/light sleep, S3/deep sleep, S4/deep or wave sleep, REM and MT/movement time [9].
The AASM criteria are a modified version of the R & K criteria. Some differences between the AASM
and R & K criteria are as follows [9,10]:
1. NREM stages in the R & K criteria (51, 52, 53, and 54) are referred to as stages N1, N2, and N3 in

the AASM criteria.

In the AASM criteria, deep sleep (N3) is a combination of the 53 and S4 stages of the R & K criteria.

3.  Movement time (MT) is eliminated as a sleep staéére in the AASM criteria.

The stages of sleep can be thought of as a cyclic alternation of non-rapid eye movement (IFFJEM)
and rapid eye movement (REM) stages [11]. It has been recognized that NREM sleep consists of four
distinct sta@ 51, 52, 53, and 54, each with specific characteristics. In 51, the patient is drowsy but
still awake. The appearance c ep spindles, vertex sharp waves, and K complexes mark 52 sleep.
Shallow sleep consists of both S1 and S2, while deep sleep consists of 53 and 54 [12].

Conventionally, technicians have interpreted and marked the sleep stages manually. As such,
it is a time-intensive process as well as being expensive and dependent on human resources. Because
it is time consuming, expensive, and is an enormous process, it is not suitable to hold the large EEG
datasets for sleep stages annotation by the human expert [13]. As a result, it has become necessary to
develop a sleep stage classification inffirder to achieve better accuracy.

Previous attempts at automated classification of sleep stages have been based on single-channel
as well as multi-channel EEG recordings and various other physiological markers. Ronzhina et al.
described a single-channel EEG based scheme utilizing an artificial neural network coupled with power
spectrum density analysis of EEG recordings [14]. Zhu etal. analyzed nine featps from single-channel
EEG recordings and applied an artificial intelligence technique referred to as a support vector machine
(SVM) to penrm classification [15]. High classification performance has been reported by Huang
by applying short-time Fourier transform to a two-channels recording of foreheadfiG signals and
a relevance vector machine [16]. In addition, Aboalayon et al. have conducted a comprehensive
review of automatic s stage classification (AASC) systems, which includes a survey of processing
techniques including pre-processing, feature extraction, feature selection, dimensionality reduction,
and classification. This study evaluated AASC methods against the sleep-EDF database based on
single-channel EEG recordings, and is remarkable for having selected 10 s epochs for its analysis. Their
model’s performance achieved the highest accuracy in comparison to previous results [17]. Braun et al.
had applpd low dimensional FFT features on the sleep-EDF database with the usage of eight @@ tistical
features from the Pz-Oz EEG channel. The classification performance had reached with the accuracy
90.9‘”9].8%, 92.4%, 94.3%, and 97.1% for all 6- to 2-state sleep stages [15].

In this paper, we present a system of sleep stage classification based on EEG signals. Instead of
using complicated processes of signal filtering and feature extraction, we utilized high-dimensional
features calculated by fast Fourier transform (FFT) from single- or multi-channel EEG signals. FFT is
one of the trmﬁunal and verified techniques capable of extracting features from EEG signals. If an
EEG signal is recorded at a sampling frequency of 100 Hz, the FFT can separate the signal into
features in the range of 0-100 Hz. Typically, in previous studies, a small number of FFT features
corresponding to the bands shown in Table 1 were extracted and used. However, a sarang window
of 30 s at 100 Hz sampling frequency allows for an extraction of at most 3000 features in the range of
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0-100 Hz. In this study, we demonstrate that by incorporating high-dimensional FFT features and
EJsimple feature selection by random forest algorithm into the analysis, it is possible to outperform
state-of-the-art algorithms for the Sleep-EDF database. Our proposed approach consists of three main
steps: brainwaves acquisition from EEG el, feature processing, and finally, the classification
evaluation by measuring the accuracy. The flowchart of our approach is shown in Figure 2.

EEG Signals from PSG

| Sleep Stages of The Subjects |

Obtaining the Time Series Signal
of EEG Signals

I

Preprocessing (Segmented Brainwaves Epochs)

[ —

Feature Extraction of Brainwaves
Epochs using FFT

H
o
=
=
=
S
w
o
&

Feature Selection of Extracted
Features using Random Forest

Y

High-Dimensional FFT Features

CLASSIFICATION

oo || s
VALIDATION CLASSIFIER
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Figure 2. The flowchart of the proposed research.

2. Materials and Methods
2.1. Experimental Data

Sleep-EDF Dataset

The dataset is open-source, and many previous researchers have utilized this dataset in sleep
scoring research [15,17-22]. Among thne available versions of the dataset, we used an expanded
version containing 61 recordings from 42 Caucasian male and female subjects. The subjects” ages ranged
from 18 to 79 years. This dataset was organized into two sub-sets. The first subset with 39 recordings
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from 20 subjects was EEG data recorded in a study from 1987 to 1991. These subjects were healthy and
in ambulatory condition. The second subset with 22 recordings from 22 subjects was EEG data recorded
in astudy in 1994 and the subjects reported slight difficulty in falling asleep but were otherwise healthy.
The EEG data had been collected over 24 h of the daily lives of the subjects. A miniature telemetry
system 1g§rded nocturnal EEG data from four subjects in a hospital [19]. The data was collected from
just two channels: Fpz-Cz and Pz-Oz, at a sampling frequency of 100 Hz. The previous researchers had
established that on single-channel analysis the Pz-Oz channel demonstrated improved performance
over the Fpz-Cz channel. Using R & K criteria, EEG recordings of bui‘ht‘he subsets had been
annotated by an experienced sleep technician on a 30 s basis. Therefore, the duration of each epoch is
established 730 s and yielded 3000 samples. The epochs had been annotated by sleep technicians as:
AWA, REM, 51,52, 53, 54, “Movement Time"” or ”Unscnred.mn the other hand, the annotations using
AASM criteria consisted of the designations AWA, REM, N1, N2, N3, and “Unknown sleep stage.”
The number of samples according to R & K criteria are shown in Table 2. After re‘movingalovement
Time” and “Unscored,” total number of the samples is 127,663. The epoch duration was 30 s.

Table 2. The number of samples in Sleep-EDF dataset (R & K criteria).

# of Classes AWA REM 51 S2 53 S4
6 74,827 11,848 4,848 27,292 5075 3773
5 74,827 11,848 4,848 27,292 8848
4 74,827 11,848 32,140 8848
3 74,827 11,848 40,988
2 74,827 52,836

1
As far as features analyzed, we prepared 6000 features extracted from two channels (Pz_Oz and
Fpz_Cz). For each channel, 1000 features were extracted at a sampling frequency of 100 Hz and epoch
lasted 30 s. The features were used in the experiments separately or in combination.

2.2. Feature Extraction with Fast Fourier Transform (FFT)

The feature represents a differentiating property or an operative component identified in a section
of a pattern, and a recognizable measurement. Feature extraction is a critical step in EEG signal
processing. Consequently, minimizing the loss of valuable information attached to the signal is one of
the goals of feature extraction. Additionally, feature extraction decreases the resources required to
describe a vast set of data accurately. When carried out successfully, feature extraction can minimize
the cost of information processing, reduce the complexity of data implementation, and mitigate the
possible need to compress the inforffion [23].

The extraction of informative stgfigtical features from the EEG signal is necessary to perform
slemstage classification efficiently. In general, the EEG signal is h.lgaf complex and non-linear,
so it would be better to use a non-linear model ]. In this study, the fast Fourier transform (FFT)
is utilized to extract the features of EEG signal for sleep stage classification. Hence, the values of
a given Hme-series data as a numeric sequence data are converted into a finite set of the frequency
domain. Then, to deconstruct signals into segmented EEG signal sequences, we divided them into
equal time intervals callffepochs. The length of each epoch was set to every 30 s of EEG signal.
Accordingly, the epochs were then processed using frequency analysis in wirh frequency spectra
were generated using FFT. We used FFT to convert a signal from its original, time domdgfgsignal to a
representation in the frequency domain signal [25]. Figure 3 represents in the form of time-domain
signal and frequency-domain signal.
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Previous studies have sh@ that FFT is a promising tool for stationary signal processing,
and enjoys a speed advantage over virtually all other available methods in real-time applications,
and {is more appropriate for sine waveforms such as in EEG signals. However, the disadvantage is
that it does not have excellent spectral estimation and cannot be employed for analysis of short EEG
signals [23].

2.3. Feature Selection and Optimization

Feature extraction is an effective way of recognizing and visualizing significant data. This process
shortens the time for training and application, as well as reducing demands for data calculation and
storage. Some researchers combine several feature extraction techniques in order to achieve better
data analysis. Consequently, applicat of multiple processes may often affect feature redundancy
and expansion of feature dimension. Feature selection reduces the dimension of feature space and
minimizes the data training and application [26]. In this study, we conducted a simple feature selection
based on the importance of each feature evaluated by random forest algorithm. Mean decrease in
Gini was calculated by using andom Forest package for R, then all features were sorted in the
descending order of this value. For Sleep-EDF dataset, we examined the number of important features
to be selected with 50 increments in between 500 and 2500, and the most appropriate feature subset
were determined for each number of classes. More details about the feature selection in this study are
found in [27] which describes basically the same feature selection method.

2.4. Classification Evaluation

The classification step was completed with the 5- or 10-fold crr.avalidatiun. This means for
each process, this step is repeated 5 or 10 times per sample. The 5- or 10-fold cross-validation comes
from the cross validation technique to evaluate prediction performance from classification model.
This technique splits the daffjet into training and test data. We trained each fold in order to have a
better estimation of the true error rate of each set. The model is created by using the training data, and
the test data is used for evaluating the performance of prediction.

Among the various classification algorithms, we adopted the multiclass support vector machine
(SVM) algorithm, a supervised machine learning method, implemented in the kernlab package for R.
The SVM classifier is a popular algorithm widely applied to various problems in machine learning.
SVM constructs the maximum m@fgn around the separating hyperplane between the classes. In this
study, we utilized a Gaussian or Radial BamFuncﬁcm (RBF) Kernel. One of the advantages of the
SVM method is that this method is effective when the number of features is greater than the number of
samples. In addition, the model is sufficient as a classification model of the EEG signal.
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3. Experimental Results

3.1. Classification of Sleep-EDF Dataset

In this experiment, 2-6 classes defined by R & K criteria were selected as class labels. Features from
two channels were analyzed separately or in combination. From one channel, 3000 features (i.e., 100
Hz x 30 s) were extracted. For perforr'ralce evaluation, five-fold cross-validation was conducted. The
results obtained using our method are compared with the results acquired using (ner state-of-the-art
methods in. In this Table 3, it can be seen that our method with 6000 features from two channels
(Pz_Oz and Fpz_Cz) outperformed all other methods in the classification of 6 to 2 classes.

Table 3. Performance comparison on Sleep-EDF dataset (R & K criteria, 2-6 classes).

Method Length of Epoch (s) # of Epochs #of Classes  Accuracy (%)
6 86.60
88.60
91.00
94.50
97.40
89.43
90.48
92.24
94.23
97.85
90.17
91.42
92.24
94.36
97.79
89.70
88.57
90.02
92.69
97.13
90.77
91.73
92.82
94.41
97.88

Nakamura et al. 2017 30 126,699

Yildirim et al. 2019 [22] 30 127,512

Our method (Pz_0z) 30 127 663

Our method (Fpz_Cz) 30 127 663

Our method

(Pz_Oz and Fpz_Cz) 30 127,663

P | W | | S | k| W [ | D | R [ W[l | O [ R | 1O k| G| |

3.2. Classification of Sleep-EDF Dataset Expanded (197 Recordings)

The results of applying our method against the latest, extended version of the Sleep-EDF database,
show that in contrast to the first version of the database which consisted of 61 recordings (version 1),
the latest version consists of 197 recordings (version 2, released in 2018). It has been studied in many
recent papers (e.g., [27,28], however, because of its large size, it is rarely studied as a whole (many
papers which classified it are using only a small subset of it). Therefore, it is hard to compare the
performance on it under the same or similar conditions. Instead of comparing performances, in this
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subsection we mainly analyzed the relationship between classification performance and the balance
of classes.

Table 4 contains the result of the classification experiment using our method. “SC” and “ST”
found in the recording ID. The prefixes “SCnd “ST” stand for “Sleep Cassette” and “Sleep
Telemetry”, respectively. In this experiment, ten-fold cross validation was conducted for each recording.
The average, highest, and lowest accuracies were 87.84%, 96.54%, and 37.03%, respectively. Since
the accuracies are greatly affected by the degree of sample distribution among the classes in each
recording, a large discrepancy exists between the highest and lowest accuracies. For example, in the
recording SC4201, which achieved the highest accuracy, the AWA class occupies ~73% of the recording.
In contrast, the lowest accuracy was achieved by ST7151 with a more even distribution between the
classes (AWA:REM:51:52:53:54 = 104:143:78:304:142:126). This is even more clearly demonstrated in
Figure 4, where we show the relationship between accuracy and degree of class imbalance (represented
in this experiment by the standard deviation of class sizes in a recording). There appears to be an
almost linear relationship (correlation coefficient was 0.9857).

Table 4. Performance of classification for each recording in Sleep-EDF database (version 2).

ID Accuracy (%) D Accuracy (%) ID Accuracy (%) D Accuracy (%)
SC4001 94.17 SC4252 9277 SC4522 94.24 SC4812 9126
SC4002 92.49 SC4261 8925 SC4531 89.22 SC4821 9267
SC4011 94.27 SC4262 9243 SC4532 92.68 SC4822 89.17
SC4012 93.43 SC4271 9037 SC4541 93.68 ST7011 7556
SC4021 94.11 SC4272 91.59 SC4542 90.28 ST7012 B81.39
SC4022 Y92.86 54281 91.27 SC4551 90.97 ST7021 8362
SC4031 95.88 54282 91.42 SC4552 94.29 ST7022 7929
SC4032 94.44 S5C4291 91.54 SC4561 B84.57 ST7041 5873
SC4041 90.51 SC4292 91.67 SC4562 90.25 ST7042 6579
SC4042 91.58 S5C4301 9148 SC4571 89.66 5T7051 43.61
SC4051 95.29 SC4302 9294 SC4572 92.47 5T7052 B4T7
SC4052 92.51 SC4311 9199 SC4581 89.89 ST7061 80.09
SC4061 95.33 5C4312 89.40 SC4582 88.17 5T7062 85.53
SC4062 94.27 5C4321 8892 S5C4591 91.41 ST7071 79.06
SC4071 93.71 5C4322 9226 54592 85.54 S5T7072 B1.05
S5C4072 93.70 5C4331 9151 SC4601 92.68 ST7081 83.10
SC4081 92.56 5C4332 9424 SC4602 86.79 ST7082 8177
SC4082 90.92 S5C4341 85921 SC4611 87.08 ST7091 7545
S5C4091 91.59 S5C4342 96.42 SC4612 93.10 ST7092 7799
S5C4092 90.59 5C4351 9434 SC4621 84.74 ST7101 8034
SC4101 93.38 5C4352 90.59 SC4622 91.20 ST7102 75.67
SC4102 94.84 S5C4362 92,08 SC4631 91.06 S5T7111 8240
SC4111 92.12 5C4371 91.13 SC4632 93.04 5T7112 8343
SC4112 95.32 5C4372 8679 SC4641 94.62 5T7121 7976
SC4121 92.54 SC4381 9339 SC4642 92.58 ST7122 82.65
SC4122 91.56 SC4382 9323 SC4651 89.64 ST7131 85.80
SC4131 92.97 SC4401 9194 SC4652 85.62 ST7132 7647

SC4141 95.12 SC4402 9340 SC4661 85.77 ST7141 75.50
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ID Accuracy (%) ID Accuracy (%) ID Accuracy (%) D Accuracy (%)
SC4142 95.31 SC4411 9292 SC4662 88.53 5T7142 7274
SC4151 92.97 SC4412 59.87 SC4671 91.07 5T7151 3706
SC4152 93.25 SC4421 9523 SC4672 93.35 5T7152 7994
SC4161 90.29 SC4422 9207 SC4701 88.10 5T7161 4893
SC4162 91.04 SC4431 91.50 SC4702 92.39 S5T7162 7406
SC4171 92.20 SC4432 9208 SC4711 88.52 ST7171 7937
SC4172 86.52 SC4441 88.84 SC4712 93.23 ST7172 7720
SC4181 92.34 SC4442 9077 SC4721 83.95 5T7181 8292
SC4182 91.00 SC4451 9124 SC4722 87.05 5T7182 5430
SC4191 90.25 SC4452 9094 SC4731 85.42 5T7191 47.16
SC4192 91.21 SC4461 94.06 SC4732 87.96 5T7192 87.10
SC4201 96.54 SC4462 9378 SC4741 9212 ST7201 66.16
SC4202 95.04 SC4471 9090 SC4742 90.71 ST7202 69.62
sC4211 92.40 SC4472 85.81 SC4751 94.07 ST7211 7940
SC4212 93.67 SC4481 90.11 SC4752 87.98 S5T7212 7728
SC4221 88.17 SC4482 9331 SC4761 92.82 ST7221 8295
SC4272 59.88 S5C4491 93.88 SC4762 89.00 ST7222 8278
S5C4231 93.08 SC4492 9237 SC4771 90.33 ST7241 65.62
SC4232 86.76 SC4501 9116 SC4772 a0.19 ST7242 6294
SC4241 92.30 SC4502 9377 SC4801 91.42
SC4242 94.92 SC4511 9053 SC4802 91.43
SC4251 96.34 SC4512 92.85 SC4811 91.79
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Figure 4. Plot of accuracy and standard deviation of class sizes in each recording,.
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4, D'Hlssions and Conclusions

In order to improve the performance of sleep stage classification, previous work has mainly
focused on the following points:

e More effective methods of feature extraction from the original EEG signal (e.g., wavelet transform)

e  Application of filters (e.g., band-pass filter) and noise reduction algorithms

e Identification of better classifier algorithms (e.g., random forest, adaptive boosting, and
convolutional neural network)

e Improvement of class imbalance by under- and/or over-sampling (e.g., SMOTE)

In contrast, we have demonstrated in this paper that fully utilizing thousands of FFT features
extracted from single- and multi-channel EEG signals in combination with simple feature selection
is an effective means of improving the performance of automated sleep stage classification. In our
experiment on 6- to 2-class classification against the Sleep-EDF dataset, our method outperformed
other recent and advanced methods.

Additionally, we demonstrated the result of application of our method to the classification of the
recording included in the latest version of Sleep-EDF database. We clearly showed that accuracy in
classifying a recording is highly influenced by the degree of class imbalance.

The differences between the amounts of the majority class and the minority class ifgghe datasets
leads to an imbalanced dataset. In other words, balanced class distributions are essential in supervised
learning as Edard classification. One of the methods for solving this problemisby cmg oversampling
and it aims to achieve a balanced class distribution by creating an artificial data. SMOTE (synthetic
minority over-sampling technique) is an over-sampling method that is typically used to balance
an imbalanced data as a part of machine learning. New instances are created as minority class
instances from minority class neighbors that performed like the original instances of the minority
class [29]. Related to sleep stage classification, our experimental results suggested that by combining our
thocl with under- and/or over-sampling methods like SMOTE, we may achieve better classification
performance of the recordings in the latest Sleep-EDF database.

One of the disadvantages in our method is the intensive computational requirements in memory
and processor. However, it also means that if the available resource of computing is rich, its performance
can be further improved. In addition to the analysis of relationship between the number of features

and performance, we need to conduct future work on the effectiveness of our method in other datasets.
Author Contributions: Conceptualization, M.K.D. and K.S.; formal analysis, B.P., W., and EL; funding
acquisition, K.S.; investigation, M.K.D.; methodology, K.S.; software, NG.N., M.R.F, a K.; supervision, K.S.;
writing—original draft, M.K.D.; writing—review and editing, B.F,, K.R.M., EI., and K.S. % authors have read and
agreed to the published version of the manuscript.

Funding: This work was partially supported by JSPS KAKENHI Grant Number JP18K11525 and Kanazawa
University CHOZEN project.

Acknowledgments: The first and EEbnd authors would like to gratefully acknowledge the BUDI-LN scholarship

from Indonesia Endowment Fund for Education (LPDP), Ministry of Education and Culture Republic of IndBhesia

(KEMENDIKBUD), and Ministry of Research and Technology of Republic Indonesia (KEMENRISTEK). In this

research, the super-computing resource was provided by Human Genome Center, the Institute of Medical Science,

the University of Tokyo. Additional computation time was provided by the super computer system in Research
anization of Information and Systems (ROIS), National Institute of Genetics (NIG).

Conflicts of Interest: The authors declare no conflict of interest

References

1. Touchetle, E.; Petit, D.; Seguin, |.R.; Boivin, M.; Tremblay, R.E.; Montplaisir, ].Y. Associations Between
Sleep Duration Patterns and Behavioral/Cognitive Functioning at School Entry. Sleep 2007, 30, 1213-1219.
[CrossRef] [PubMed]

2. Walker, M.P;; Stickgold, R. Sleep, Memory, and Plasticity. Annu. Rev. Psychol. 2006, 57, 139-166. [CrossRef]
[PubMed]




Appl. Sci. 2020, 10,1797 11 of 12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

24,

26.

Alvarez-Estévez, D.; Moret-Bonillo, V. Identification of Electroencephalographic Arousals in Multichannel
Sleep Recordings. IEEE Trans. Biomed. Eng. 2011, 58, 54-63. [CrossRef] [PubMed]

Keenan, S.A. Handbook of Clinical Neurophysiology, An Overview of Polysomnography; Elsevier B.V.: Amsterdam,
The Netherlands, 2005; Volume 6, Chapter 3, p. 18.

Billiard, M.; Bae, C.; Avidan, A. Sleep Medicine; Smith, H.R., Comella, C.L., Hogl, B.L., Eds.; Cambridge
University Press: Cambridge, UK, 2012.

Kaniusas, E. Biomedical Signals and Sensors I; Springer: Berlin, Germany; pp. 1-26. [CrossRef]

Aboalayon, K.A.L; Faezipour, M. Multi-Class SVM Based on Sleep Stage Identification Using EEG Signal.
Proceedings of the 2014 IEEE Healthcare Innovation Conference (HIC), Piscataway, NJ, USA, 8-10 October
2014; pp. 181-184.

Thorpy, M.]. The International Classification Of Sleep Disorders: Diagnostic and Coding Manual. Rev.Ed;
One Westbrook Corporate Center, Suite 920: Westchester, IL, USA, 2001.

Rechtschaffen, A.; Kales, A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages
of Human Subjects; National Government Publication: Los Angeles, CA, USA, 1968.

Iber, C.; Medicine, A.A.0S. The AASM Manual for The Scoring of Sleep and Associated Events: Rules, Terminology
and Technical Specifications; American Academy of Sleep Medicine: Darien, IL, USA, 2007.

Hobson, J.A. Sleep is of The Brain, by The Brain and For The Brain. Nature 2005, 437, 1254-1256. [CrossRef]
[PubMed]

Marshall, L.; Helgadottir, H.; Molle, M.; Born, ]. Boosting Slow Oscillations During Sleep Potentiates Memory.
Nature 2006, 444, 610-613. [CrossRef] [PubMed]

Norman, R.G.; Pal, L; Stewart, C.; Walsleben, J.A.; Rapoport, D.M. Interobserver Agreement Among Sleep
Scorers From Different Centers in a Large Dataset. Sleep 2000, 23, 901-908. [CrossRef] [PubMed]
Ronzhina, M.; Janousek, O.; Kolarova, ].; Novakova, M.; Honzik, P; Provaznik, L. Sleep Scoring Using
Artificial Neural Networks. Sleep Med. Rev. 2012, 16, 251-263. [CrossRef] [PubMed]

Zhu, G.; Li, Y.; Wen, P.P. Analysis and Classification of Sleep Stages Based on Difference Visibility Graphs
From A Single-Channel EEG Signal. IEEE |. Biomed. Health Inforn. 2014, 18, 1813-1821. [CrossRef] [PubMed]
Huang, C.-S; Lin, C-L.; Ko, L-W,; Liu, S-Y.; Su, T.-P; Lin, C-T. Knowledge-based Identification of Sleep
Stages Based on Two Forehead Electroencephalogram Channels. Front. Neurosci. 2014, 8, 263. [CrossRef]
[PubMed]

Aboalayon, K.AL; Faezipour, M.; Almuhammadi, W.S.; Moslehpour, S. Sleep Stage Classification Using EEG
Signal Analysis: A Comprehensive Survey and New Investigation. Entropy 2016, 18, 272. [CrossRef]
Braun, E.T; Silvera, TL.T.D.; Kozakevicius, A.D.].; Rodrigues, C.R.; Giovani, B. Sleep Stages Classification
Using Spectral Based Statistical Moments as Features. Revista de Informatica Teorica e Aplicada 2018, 25.
[CrossRef]

Hassan, A.R.; Subasi, A. A Decision Support System for Automated Identification of Sleep Stages from
Single-Channel EEG Signals. Knowl.-Based Syst. 2017, 128, 115-124. [CrossRef]

Liang, S.-F.; Kuo, C.-E.; Hu, Y.-H.; Pan, Y.-H.; Wang, Y.-H. Automatic Stage Scoring of Single-Channel
Sleep EEG by Using Multiscale Entropy and Autoregressive Models. IEEE Trans. Instrum. Meas. 2012, 61,
1649-1657. [CrossRef]

Nakamura, T.; Adjei, T.; Alqurashi, Y.; Looney, D.; Morrell, M.J.; Mandic, D.P. Complexity science for sleep
stage classification from EEG. In Proceedings of the International Joint Conference on Neural Networks,
Anchorage, AK, USA, 14-19 May 2017.

Yildirim, O.; Baloglu, U.B.; Acharya, U.R. A Deep Learning Model for Automated Sleep Stages Classification
Using PSG Signals. Int. |. Environ. Res. Public Health 2019, 16, 599. [CrossRef] [PubMed]

Al-Fahoum, AS; Al-Fraihat, A.A. Methods of EEG Signal Features Extraction Using Linear Analysis in
Frequency and Time-Frequency Domains. [SRN Newrosci. 2014, 2014, 730218. [CrossRef] [PubMed]
Freeman, W.].; Skarda, C.A. Spatial EEG patterns, non-linear dynamics and perception: the neo-Sherringtonian
view. Brain Res. 1985, 357, 147-175. [CrossRef]

Nussbaumer, H.J. Fast Fourier Transform and Convelution Algorithms; Springer: Berlin/Heidelberg, Germany,
1981. [CrossRef]

Wen, T.; Zhang, 7. Effective and Extensible Feature Extraction Method Using Genetic Algorithm-based
Frequency-Domain Feature Search for Epileptic EEG Multiclassification. Medicine (Baltimore) 2017, 96, e6879.
[CrossRef] [PubMed]




Appl. Sci. 2020, 10,1797 12 0f 12

27. Huang, W.; Guo, B.; Shen, Y,; Tang, X.; Zhang, T.; Li, D.; Jiang, Z. Sleep staging algorithm based on
multichannel data adding and multifeature screening. Conmput Methods Programs Biomed. 2019, 187, 105253.
[CrossRef] [PubMed]

28. Timplalexis, C.; Diamantaras, K.; Chouvarda, I. Classification of Sleep Stages for Healthy Subjects and
Patients with Minor Sleep Disorders. In Proceedings of the 2019 IEEE 19th International Conference on
Bioinformatics and Bioengineering (BIBE), Athens, Greece, 28-30 October 2019; pp. 344-351.

29. Chawla, N.V,; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling
Technique. [. Artif. Intel. Res. 2002, 16, 321-357. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http://creativecommons.orgflicenses/by/4.0/).




Classification of Brainwaves for Sleep Stages by High-
Dimensional FFT Features from EEG Signals

ORIGINALITY REPORT

19, 7. 156  5u

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

Al Ahnaf Rashik Hassan, Mohammed Imamul 1
: %
Hassan Bhuiyan. "Dual tree complex wavelet
transform for sleep state identification from
single channel electroencephalogram”, 2015
IEEE International Conference on
Telecommunications and Photonics (ICTP),
2015

Publication

Le, Tu Kien T., Osamu Hirose, Lan Anh T, 1 o
Nguyen, Thammakorn Saethang, Vu Anh Tran, ’
Xuan Tho Dang, Duc Luu Ngo, Mamoru Kubo,

Yoichi Yamada, and Keniji Satou. "Inference of
domain-domain interactions by matrix
factorisation and domain-level features",
International Journal of Functional Informatics
and Personalised Medicine, 2014.

Publication

3 Submitted to Unviersidad de Granada 1
%

Student Paper

ebin.pub

Internet Source



(K

o

WWW.coursehero.com

Internet Source

T

Sagar Santaji, Snehal Santaji, Veena Desai.
"Automatic sleep stage classification with
reduced epoch of EEG", Evolutionary
Intelligence, 2021

Publication

T

=

seer.ufrgs.br

Internet Source

(K

Divya Acharya, Medha Tiwari, Bullepallii
Bhulakshmi Devi, Sadaf Shaikh, Kalaivaani

Natarajan, Anu Maria Babu, Arpit Bhardwaj.

"Chapter 29 Feature Extraction for
Classification Methods of EEG Signals",
Springer Science and Business Media LLC,
2021

Publication

T

"Image Analysis and Recognition", Springer
Science and Business Media LLC, 2018

Publication

T

WWW.MDPI.COM

Internet Source

(K

web.archive.org

Internet Source

<1%




Tingxi Wen, Zhongnan Zhang. "Effective and
| . - <l
extensible feature extraction method using
genetic algorithm-based frequency-domain
feature search for epileptic EEG
multiclassification", Medicine, 2017
Publication
Huang, Chih-Sheng, Chun-Ling Lin, Li-Wei Ko, <1 y
Shen-Yi Liu, Tung-Ping Su, and Chin-Teng Lin. ’
"Knowledge-based identification of sleep
stages based on two forehead
electroencephalogram channels", Frontiers in
Neuroscience, 2014.
Publication
Peyman Ghasemzadeh, Hashem Kalbkhani, <1 o
Shadi Sartipi, Mahrokh G. Shayesteh. ’
"Classification of sleep stages based on LSTAR
model", Applied Soft Computing, 2019
Publication
export.arxiv.or
InterFr?etSource g <1 %
Submitted to University of Leeds
Student Paper y <1 %
Ye Yuan, Kebin Jia, Fenglong Ma, Guangxu <1 o

Xun, Yaqging Wang, Lu Su, Aidong Zhang. "A
hybrid self-attention deep learning framework
for multivariate sleep stage classification",
BMC Bioinformatics, 2019

Publication



giapjournals.com

Internet Source

<1%

Huaming Shen, Feng Ran, Meihua Xu, Allon <1 o
Guez, Ang Li, Aiying Guo. "An Automatic Sleep
Stage Classification Algorithm Using Improved
Model Based Essence Features", Sensors,
2020
Publication
M. Murugappan, S. Murugappan. "Human <1 %
emotion recognition through short time
Electroencephalogram (EEG) signals using
Fast Fourier Transform (FFT)", 2013 IEEE 9th
International Colloquium on Signal Processing
and its Applications, 2013
Publication
Weiyi Yang, Yujuan Si, Gong Zhang, Di Wang, <'I %
Meiqgi Sun, Wei Fan, Xin Liu, Liangliang Li. "A
novel method for automated congestive heart
failure and coronary artery disease
recognition using THC-Net", Information
Sciences, 2021
Publication
s,StiEnE?;EErEd to European University of Lefke <1 o
Wolfe, Jeremy, Kluender, Keith, Levi, Dennis. <'I o

"Sensation and Perception", Sensation and
Perception, 2021



Publication

Ahnaf Rashik Hassan, Mohammed Imamul <1 o
Hassan Bhuiyan. "Automated identification of ’
sleep states from EEG signals by means of
ensemble empirical mode decomposition and
random under sampling boosting", Computer
Methods and Programs in Biomedicine, 2017
Publication

Chen, Shih-Jui, Chia-Ju Peng, Yi-Chun Chen, <1 o
Yean-Ren Hwang, Ying-Sian Lai, Shou-Zen Fan,
and Kuo-Kuang Jen. "Comparison of FFT and
marginal spectra of EEG using empirical mode
decomposition to monitor anesthesia",

Computer Methods and Programs in
Biomedicine, 2016.
Publication

Submitted to Queensland University of <1 o
Technology
Student Paper

Gustavo E. A. P. A. Batista. "A study of the <1 o
behavior of several methods for balancing ’
machine learning training data", ACM SIGKDD
Explorations Newsletter, 6/1/2004
Publication

Peyman Ghasemzadeh, Hashem Kalbkhani, <1 o

Mahrokh G. Shayesteh. "Sleep stages
classification from EEG signal based on



Stockwell transform”, IET Signal Processing,
2019

Publication

Submitted to University of Technology, <1 o
Sydney
Student Paper

Yang Li, Momoka Kasuya, Kazuo Sakiyama. <1 y
"Comprehensive Evaluation on an ID-Based ’
Side-Channel Authentication with FPGA-Based
AES", Applied Sciences, 2018
Publication

A.H. Muqaibel, A. Safaai-Jazi. "A new <1 o
formulation for characterization of materials ’
based on measured insertion transfer
function", IEEE Transactions on Microwave
Theory and Techniques, 2003
Publication
Georgios Douzas, Fernando Bacao, Felix Last.

C . <l%
"Improving imbalanced learning through a
heuristic oversampling method based on k-
means and SMOTE", Information Sciences,
2018
Publication

Hojat Ghimatgar, Kamran Kazemi, <1 o

Mohammad Sadegh Helfroush, Ardalan
Aarabi. "An automatic single-channel EEG-
based sleep stage scoring method based on



hidden Markov Model", Journal of
Neuroscience Methods, 2019

Publication

IFMBE Proceedings, 2014.

Publication g <1 0/0
Submitted to University of Nottingham

Student Paper y g <1 %

Amijed S. Al-Fahoum, Ausilah A. Al-Fraihat. <1 o
"Methods of EEG Signal Features Extraction ’
Using Linear Analysis in Frequency and Time-
Frequency Domains", ISRN Neuroscience,
2014
Publication
journals.plos.or

'Ilnternet Sourcep g <1 %
www.tandfonline.com

Internet Source <1 %
Lecture Notes in Computer Science, 2015.

Publication p <1 0/0

Luigi Fiorillo, Alessandro Puiatti, Michela <1 o

0

Papandrea, Pietro-Luca Ratti et al.
"Automated sleep scoring: A review of the
latest approaches”, Sleep Medicine Reviews,
2019

Publication




S. Rajalakshmi, R. Venkatesan. "Chapter 3
. . < | %
Exploring Cepstral Coefficient Based Sleep
Stage Scoring Method for Single-Channel EEG
Signal Using Machine Learning Technique",
Springer Science and Business Media LLC,
2018
Publication
Kenji Sggiokq, Bruce Bowerman. | <1 o
"Combinatorial Contact Cues Specify Cell
Division Orientation by Directing Cortical
Myosin Flows", Developmental Cell, 2018
Publication
Mahdi Rahbar Alam, Reza Sameni. "Automatic
L . <l%
Wake-Sleep Stages Classification using
Electroencephalogram Instantaneous
Frequency and Envelope Tracking", Cold
Spring Harbor Laboratory, 2020
Publication
Pejman Memar, Farhad Faradji. "A Novel <1 o
Multi-Class EEG-Based Sleep Stage
Classification System", IEEE Transactions on
Neural Systems and Rehabilitation
Engineering, 2018
Publication
Peker, Musa. "An efficient sleep scoring <1 o

system based on EEG signal using complex-
valued machine learning algorithms",
Neurocomputing, 2016.



Publication

5
(0))

josrjournals.org

Internet Source

<1%

"Abstracts", Journal of Sleep Research, <1 o
08/31/2010
Publication
Hogeon Seo, Seunghyeok Back, Seongju Lee,
. . <l%
Deokhwan Park, Tae Kim, Kyoobin Lee. "Intra-
and inter-epoch temporal context network
(IITNet) using sub-epoch features for
automatic sleep scoring on raw single-channel
EEG", Biomedical Signal Processing and
Control, 2020
Publication
Mikito Ogino, Yasue Mitsukura. "Portable
. . <Il%
Drowsiness Detection through Use of a
Prefrontal Single-Channel
Electroencephalogram”, Sensors, 2018
Publication
Monika Prucnal, Adam G. Polak. "Effect of <1 o
Feature Extraction on Automatic Sleep Stage ’
Classification by Artificial Neural Network",
Metrology and Measurement Systems, 2017
Publication
Oliver Faust, Hajar Razaghi, Ragab Barika, <1 o

Edward ] Ciaccio, U Rajendra Acharya. "A
review of automated sleep stage scoring



based on physiological signals for the new

millennia", Computer Methods and Programs

in Biomedicine, 2019

Publication

Rajeev Sharma, Ram Bilas Pachori, Abhay <1
: %
Upadhyay. "Automatic sleep stages
classification based on iterative filtering of
electroencephalogram signals", Neural
Computing and Applications, 2017
Publication
Yong Jae Lee, Young Shin Chung, Jung-Yun <1 o
Lee, Eun Ji Nam, Sang Wun Kim, Sunghoon ’
Kim, Young Tae Kim. "Impact of increased
utilization of neoadjuvant chemotherapy on
survival in patients with advanced ovarian
cancer: experience from a comprehensive
cancer center", Journal of Gynecologic
Oncology, 2018
Publication
elearning.medistra.ac.id 1
Internet Sourc% < %
waset.or “
Internet Sourceg < %
www.ncbi.nlm.nih.gov
Internet Source g <1 %
57 Ali Abdollahi Gharbali, Shirin Najdi, José <1 o

Manuel Fonseca. "Investigating the



contribution of distance-based features to
automatic sleep stage classification",
Computers in Biology and Medicine, 2018

Publication

Pan Tian, Jie Hu, Jin Qi, Xian Ye, Datian Che,
Ying Ding, Yinghong Peng. "A hierarchical
classification method for automatic sleep
scoring using multiscale entropy features and
proportion information of sleep architecture",
Biocybernetics and Biomedical Engineering,
2017

Publication

<1%

Emina Alickovic, Abdulhamit Subasi. <1 o
"Ensemble SVM Method for Automatic Sleep ’
Stage Classification", IEEE Transactions on
Instrumentation and Measurement, 2018

Publication

repo.ur.krakow.pl
Internet Source < 1 %

Exclude quotes On Exclude matches Off

Exclude bibliography On



