

ANALISIS OVERCLOCKING PADA KINERJA SISTEM KOMPUTER DENGAN MENGGUNAKAN PROCESSOR AMD RYZEN 3 3100

LAPORAN SKRIPSI

Ockly RajabPratama PC4617030020EKNIK NEGERI JAKARTA

PROGRAM STUDI TEKNIK MULTIMEDIA DAN JARINGAN JURUSAN TEKNIK INFORMATIKA DAN KOMPUTER POLITEKNIK NEGERI JAKARTA

© Hak Cipta milik Jurusan TIK Politeknik Negeri Jakarta

Hak Cipta :

. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.

b. Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta

Dilarang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin dari Jurusan TIK Politeknik Negeri Jakarta

ANALISIS OVERCLOCKING PADA KINERJA SISTEM KOMPUTER DENGAN MENGGUNAKAN PROCESSOR AMD RYZEN 3 3100

LAPORAN SKRIPSI

Dibuat untuk Melengkapi Syarat-Syarat yang Diperlukan untuk Memperoleh Diploma Empat Politeknik

NEGERI

JAKARTA

Ockly RajabPratama

4617030020

PROGRAM STUDI TEKNIK MULTIMEDIA DAN JARINGAN JURUSAN TEKNIK INFORMATIKA DAN KOMPUTER POLITEKNIK NEGERI JAKARTA

2021

🔘 Hak Cipta milik Jurusan TIK Politeknik Negeri Jakarta

Hak Cipta :

: Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.

. Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta

Dilarang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin dari Jurusan TIK Politeknik Negeri Jakarta

© Hak Cipta milik Jurusan TIK Politeknik Negeri Jakarta

LEMBAR PERNYATAAN ORISINALITAS

Skripsi ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Nama

NPM

Tanggal

Tanda Tangan

: 4617030020

: Ockly RajabPratama

POLITEKNIK NEGERI JAKARTA

Pengutipan

lanpa izin dari Jurusan TIK Politeknik Negeri Jakarta

LEMBAR PENGESAHAN

Skripsi diajukan oleh :

Nama

NIM

🔘 Hak Cipta milik Jurusan TIK Politeknik Negeri Jakarta

ak Cipta :

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :

untuk kepentingan pendidikan, penelitian , penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.

. Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta

larang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun

ı

: Ockly RajabPratama

: 4617030020

Program Studi

: Teknik Multimedia dan Jaringan

Judul Proposal Skripsi

: Analisis *Overclocking* pada kinerja sistem komputer dengan menggunakan *Processor* AMD Ryzen 3 3100

Telah diuji oleh tim penguji dalam Sidang Skripsi pada hari Kamis, Tanggal <u>5</u>, Bulan <u>Agustus</u>, Tahun <u>2021</u>, dan dinyatakan LULUS.

Ketua

<u>Mauldy Laya, S.Kom., M.Kom.</u> NIP. 197802112009121003

🔘 Hak Cipta milik Jurusan TIK Politeknik Negeri Jakarta

ak Cipta :

b. Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta

larang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun

lanpa izin dari Jurusan TIK Politeknik Negeri Jakarta

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber : a. Pengutipan h untuk kepentingan pendidikan, penelitian , penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.

KATA PENGANTAR

Puji Syukur saya panjatkan kepada Tuhan Yang Maha Esa, Karena atas berkat dan rahmat-Nya, Penulis dapat menyelesaikan Skripsi ini. Penulisan ini dilakukan dalam rangka memenuhi salah satu syarat untuk mencapai gelar Diploma Empat Politeknik.

Skripsi ini berisi tentang Analisis Overclocking pada kinerja sistem komputer dengan menggunakan *Processor* AMD Ryzen 3 3100.

Penulis menyadari bahwa, tanpa bantuan dan bimbingan dari berbagai pihak, dari masa perkuliahan sampai pada penyusunan skripsi ini, sangatlah sulit bagi penulis untuk menyelesaikan skripsi ini. Oleh karena itu, penulis mengucapkan terima kasih kepada :

- 1. Ayu Rosyida Zain, S.T, M.T, selaku dosen pembimbing yang telah menyediakan waktu, tenaga dan pikiran untuk mengarahkan penulis dalam penyusunan skripsi ini.
- 2. Keluarga dan sahabat penulis yang telah memberikan bantuan dukungan material dan moral.

Tim Jagat Review yang telah memberikan izin dalam menggunakan Power Supply (PSU) dan Graphics Processing Unit (GPU) untuk melakukan kegiatan skripsi ini.

Akhir kata, penulis berharap pada Tuhan Yang Maha Esa berkenan membalas segala kebaikan semua pihak yang telah membantu. Semoga Skripsi ini membawa manfaat bagi pengembangan ilmu.

Depok, 1 Juni 2021

Penulis.

C Hak Cipta milik Jurusan TIK Politeknik Negeri Jakarta

Hak Cipta : 1. Dilarang m

lanpa izin dari Jurusan TIK Politeknik Negeri Jakarta

Sebagai sivitas akademik Politeknik Negeri Jakarta, saya yang bertanda tangan
dibawah ini :Nama: Ockly RajabPratamaNIM: 4617030020Program Studi: Teknik Multimedia dan JaringanJurusan: Teknik Informatika dan KomputerJenis Karya: SkripsiDemi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepadaPoliteknik Negeri Jakarta Hak Bebas Royalti Non-eksklusif (Non-exclusive

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI SKRIPSI

UNTUK KEPENTINGAN AKADEMIS

Royalty-Free Right) atas karya ilmiah saya yang berjudul :

Analisis *Overclocking* pada kinerja sistem komputer dengan menggunakan *Processor* AMD Ryzen 3 3100.

Beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Politeknik Negeri Jakarta berhak menyimpan, mengalih media/formatkan, mengelola dalam bentuk pangkalan data (Database), merawat, dan mempublikasikan skripsi saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : <u>Depok</u> Pada tanggal : <u>1 Juni 2021</u>

Yang Menyatakan

(Ockly RajabPratama)

🔘 Hak Cipta milik Jurusan TIK Politeknik Negeri Jakarta

lak Cipta :

- Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber : a. Pengutipan hanya untuk kepentingan pendidikan, penelitian , penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.

- b. Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta

Dilarang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun

tanpa izin dari Jurusan TIK Politeknik Negeri Jakarta

Memori sebesar 38.3%.

V

Jurusan Teknik Informatika dan Komputer - Politeknik Negeri Jakarta

Kata Kunci: amd ryzen master utility, cpu, konsumsi daya, memory try-it, overclocking.

ANALISIS OVERCLOCKING PADA KINERJA SISTEM KOMPUTER **MENGGUNAKAN PROCESSOR AMD RYZEN 3 3100**

Abstrak

Overclocking adalah sebuah metode untuk menjalankan komponen komputer dengan

kecepatan yang lebih tinggi dari standar pabrik-nya. Maka dari itu Overclocking bisa menjadi solusi untuk memaksimalkan kinerja sistem komputer. Tujuan dari penelitian ini adalah menunjukkan seberapa besar peningkatan performa sistem yang didapat dengan melakukan Teknik Overclocking dan juga mengetahui seberapa besar peningkatan suhu dan konsumsi daya yang didapat. Overclocking memori dilakukan di BIOS menggunakan fitur bawaan Motherboard MSI yaitu Memory try-it sedangkan Overclocking CPU menggunakan Software AMD Ryzen Master Utility di Windows. Pengujian dilakukan dengan mengamati dan mendokumentasikan kinerja sistem sebelum dan sesudah dioverclock menggunakan Benchmark yang terdiri dari tiga Pengujian yaitu Pengujian pertama kestabilan, Pengujian kedua berdasarkan Skenario yang dibuat dari Pengujian kestabilan lalu Pengujian yang ketiga menggabungkan Pengujian CPU dengan menggunakan skenario Memori yang stabil. Data dari Pengujian tersebut lalu dianalisis dan dibandingkan antar skenario. hasilnya dari pengujian dan analisis yang telah dilakukan, Overclocking memiliki efek yang signifikan terhadap suhu dengan kenaikan rata-rata sebesar 23.2% menggunakan pendingin bawaan, sedangkan saat menggunakan pendingin tambahan suhu turun menjadi 21.1%, untuk konsumsi daya mendapatkan kenaikan ratarata sebesar 17.6%, dengan kenaikan performa CPU sebesar 8.9% dan kenaikan performa

DAFTAR ISI

l.	LEMBAR PERNYATAAN ORISINALITAS i
	LEMBAR PENGESAHAN ii
	KATA PENGANTAR iii
	HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI SKRIPSI UNTUK
	KEPENTINGAN AKADEMIS iv
L.	ABSTRAK
l.	DAFTAR ISI vi
	DAFTAR GAMBAR ix
	DAFTAR TABEL xiv
	DAFTAR LAMPIRAN xiv
	BAB I1
	PENDAHIJI JIAN 1
	1.1 Latar Belakang 1 1.2 Perumusan Masalah 2
	1.3 Batasan Masalah
	1.4 Tujuan dan Manfaat3
	1.4.1 Tujuan
	1.4.2 Manfaat3
	1.5 Metode Penyelesaian Masalah
	BAB II
	TINJAUAN PUSTAKA
	2.1 Overclocking
	2.2 Overclocker
	2.3 Benchmark
	2.4 Stress Test6

© Hak Cipta milik Jurusan TIK Politeknik Negeri Jakarta

Hak Cipta :

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :

 Pengutipan hanya untuk kepentingan pendidikan, penelitian , penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.

Hak Cipta :

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :

 Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.

2. Dilarang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin dari Jurusan TIK Politeknik Negeri Jakarta

b. Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta

2.5 Memory Try-It	7
2.6 Penelitian Sebelumnya	7
BAB III	20
PERENCANAAN DAN REALISASI	20
3.1 Perancangan Infrastruktur	20
3.2 Deskripsi Infrastruktur	20
3.3 Spesifikasi Perangkat dan Software/Tools	20
3.4 Realisasi Infrastruktur	21
3.4.1 Instalasi dan cara penggunaan RunMemtestPro 4.5	21
3.4.2 Instalasi dan cara penggunaan AIDA64 Extreme	22
3.4.3 Instalasi dan cara penggunaan Geekbench 4	29
3.4.4 Instalasi dan cara penggunaan Blender 2.93	35
3.4.5 Instalasi dan cara penggunaan Benchmate	38
3.4.5.1 Cara penggunaan CPU-Z	42
3.4.5.2 Cara penggunaan HWiNFO64	45
3.4.5.3 Cara penggunaan Cinebench R23	46
3.4.5.4 Cara penggunaan Cinebench R15	47
3.4.5.5 Cara penggunaan 7-Zip	48
3.4.6 Instalasi dan cara penggunaan 3DMark 11	50
3.4.7 Instalasi dan cara penggunaan 3DMark	54
3.4.8 Instalasi dan cara penggunaan Handbrake	58
3.4.9 Instalasi dan cara penggunaan Adobe Premiere Pro	61
3.4.10 Cara penggunaan AMD Ryzen Master untuk Overclocking CH	PU.64
3.4.11 Cara penggunaan Memory Try-It	67
BAB IV	70
PEMBAHASAN	70
4.1 Pengujian	70
4.2 Deskripsi Pengujian	70
4.3 Prosedur Pengujian	70
4.4 Data Hasil Pengujian	71

4.4.1	Data Hasil Pengujian Kestabilan71
4.4.2	Data Hasil Pengujian CPU72
4.4.3	Data Hasil Pengujian Memori72
4.4.4	Data Hasil Pengujian Gabungan73
4.5 Analis	sis Data76
4.5.1	Analisis Data Hasil Pengujian Kestabilan76
4.5.2	Analisis Data Hasil Pengujian CPU79
4.5.3	Analisis Data Hasil Pengujian Memori
4.5.4	Analisis Data Hasil Pengujian Gabungan
DAD V	
KESIMPULA	N
5.1 Kesim	upulan 94
5 2 Saran	95
on Dia Sultain	
DAFTAR PU	STAKA
	DOLITEKNUK
	POLITEKNIK
	NEGERI
	NEGENI
	JAKARTA

Hak Cipta :

2. Dilarang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin dari Jurusan TIK Politeknik Negeri Jakarta b. Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta

DAFTAR GAMBAR

Gambar 2.1 Tabel metode Overclocking1	9
Gambar 2.1 Fishbone Diagram1	9
Gambar 3.1 Tampilan RunMemtestPro 4.5	21
Gambar 3.2 Tampilan saat tes kestabilan berjalan2	22
Gambar 3.3 Pemilihan bahasa di instalasi AIDA64 Extreme2	22
Gambar 3.4 Tampilan Selamat Datang Instalasi AIDA64 Extreme	23
Gambar 3.5 Tampilan License Agreement AIDA64 Extreme2	23
Gambar 3.6 Lokasi Penyimpanan Software AIDA64 Extreme2	24
Gambar 3.7 Pembuatan folder start menu AIDA64 Extreme2	24
Gambar 3.8 Pembuatan shortcut desktop untuk AIDA64 Extreme2	25
Gambar 3.9 AIDA64 Extreme siap di-install2	25
Gambar 3.10 Instalasi AIDA64 Selesai	26
Gambar 3.11 Menu Benchmark Memory Latency AIDA64 Extreme	26 27
Gambar 3.12 Hoses Determinant Eatency of AIDA64 Extreme2 Gambar 3.13 Hasil pengujian memory latency AIDA64 Extreme	27
Gambar 3.14 Cara pembuatan laporan untuk Memory Latency di AIDA64 Extreme	28
Gambar 3.15 Pembuatan laporan AIDA64 Extreme2	28
Gambar 3.16 Lokasi penyimpanan laporan AIDA64 Extreme2	29
Gambar 3.17 Menu selamat datang instalasi Geekbench 42	29
Gambar 3.18 Tampilan EULA Geekbench 4	30
Gambar 3.19 Pemilihan lokasi instalasi Geekbench 43	30
Gambar 3.20 Pembuatan start menu folder Geekbench 4	31
Gambar 3.21 Instalasi Geekbench 4 selesai	31

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :

 Pengutipan hanya untuk kepentingan pendidikan, penelitian , penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.

Gambar 3.22 Tampilan menu Geekbench 4
Gambar 3.23 Proses Benchmark Geekbench 4
Gambar 3.24 Hasil Benchmark Geekbench 4
Gambar 3.25 Hasil Memory Score di Multi Core Geekbench 4
Gambar 3.26 Sofware Blender di Microsoft Store
Gambar 3.27 Download dan instalasi Blender langsung di Microsoft Store35
Gambar 3.28 Tampilan awal Blender 2.93
Gambar 3.29 Lokasi projek Blender
Gambar 3.30 Projek Car Demo di Blender 2.93
Gambar 3.31 Proses rendering di Blender 2.93
Gambar 3.32 Hasil rendering Car Demo di Blender 2.93
Gambar 3.33 Menu selamat datang instalasi Benchmate
Gambar 3.34 Lokasi penyimpanan Benchmate
Gambar 3.35 Pemilihan software Benchmark di Benchmate
Gambar 3.36 Benchmate siap di-install40
Gambar 3.37 Proses instalasi Benchmate40
Gambar 3.38 Proses instalasi Benchmate selesai41
Gambar 3.39 Menu software Benchmate41
Gambar 3.40 Tampilan menu CPU di CPU-Z42
Gambar 3.41 Tampilan menu Mainboard43
Gambar 3.42 Tampilan menu Memory
Gambar 3.43 Menu utama HWiNFO6444
Gambar 3.44 Menu status sensor di HWiNFO6445
Gambar 3.45 Tampilan utama Cinebench R2346
Gambar 3.46 Proses Stress Test Cinebench R23
Gambar 3.47 Tampilan Utama Cinebench R1547

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :

 Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.

Gambar 3.48 Proses Pengujian Cinebench R15	47
Gambar 3.49 Hasil skor setelah Proses Pengujian Selesai pada Cinebench R	1548
Gambar 3.50 Tampilan Software 7-Zip Launcher	48
Gambar 3.51 Proses Benchmark pada 7-Zip	49
Gambar 3.52 Hasil yang didapat pada 7-Zip	49
Gambar 3.53 Tampilan selamat datang di instalasi 3DMark 11	50
Gambar 3.54 EULA 3DMark 11	50
Gambar 3.55 Lokasi penyimpanan 3DMark 11	51
Gambar 3.56 Proses instala <mark>si 3DMar</mark> k 11	51
Gambar 3.57 Proses instalasi 3DMark 11 selesai	52
Gambar 3.58 Tampilan menu advanced di 3DMark 11	52
Gambar 3.59 Proses Pyhsics Test di 3DMark 11	53
Gambar 3.60 Hasil dari pengujian di 3DMark 11	53
Gambar 3.61 Tampilan selamat datang dan pemilihan bahasa 3DMark	54
Gambar 3.62 Tampilan EULA 3DMark	54
Gambar 3.63 Lokasi penyimpanan 3DMark	55
Gambar 3.64 Proses instalasi 3DMark	55
Gambar 3.65 Halaman depan 3DMark	56
Gambar 3.66 Halaman benchmarks 3DMark	56
Gambar 3.67 Halaman Sky Diver di 3DMark	57
Gambar 3.68 Proses pengujian Sky Diving di 3DMark	57
Gambar 3.69 Hasil skor Sky Diver di 3DMark	58
Gambar 3.70 Menu selamat datang saat instalasi Handbrake	58
Gambar 3.71 License Agreement Handbrake	59
Gambar 3.72 Lokasi Penyimpanan Handbrake	59
Gambar 3.73 Proses instalasi Handbrake	60

2. Dilarang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin dari Jurusan TIK Politeknik Negeri Jakarta

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :

 Pengutipan hanya untuk kepentingan pendidikan, penelitian , penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :

 Pengutipan hanya untuk kepentingan pendidikan, penelitian , penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.

2. Dilarang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin dari Jurusan TIK Politeknik Negeri Jakarta

b. Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta

Gambar 3.74 Proses encoding Handbrake60
Gambar 3.75 Activity log Handbrake61
Gambar 3.76 Login Adobe Creative Cloud61
Gambar 3.77 Tampilan Adobe Premiere Pro62
Gambar 3.78 Export Setting di Adobe Premiere Pro
Gambar 3.79 Proses Rendering di Adobe Media Encoder63
Gambar 3.80 Hasil logging dari Adobe Media Encoder63
Gambar 3.81 Peringatan dari software AMD Ryzen Master
Gambar 3.82 Tampilan menu Basic dari AMD Ryzen Master
Gambar 3.83 Tampilan menu Advanced di AMD Ryzen Master65
Gambar 3.84 Tampilan menu Profile 1 di AMD Ryzen Master65
Gambar 3.85 Preset Default sebelum di Overclock
Gambar 3.86 Preset setelah di Overclock ke 4.1 Ghz
Gambar 3.87 Tampilan EZ Mode di BIOS MSI67
Gambar 3.88 Tampilan Advanced Mode di BIOS MSI67
Gambar 3.89 Menu OC di BIOS MSI
Gambar 3.90 Menu Memory Try-it
Gambar 3.91 Profil Memory Try-it telah dipilih69
Gambar 4.1 Grafik perbandingan Konsumsi Daya di Skenario Kestabilan CPU77
Gambar 4.2 Grafik perbandingan Suhu CPU & VRM di Skenario Kestabilan CPU
Gambar 4.3 Skenario Pengujian Kestabilan Memori Berhasil
Gambar 4.4 Pengujian Kestabilan Memori di 3600 Mhz Gagal
Gambar 4.5 Grafik perbandingan Hasil Physic Score 3DMark 11
Gambar 4.6 Grafik perbandingan Hasil Suhu Rata - Rata 3DMark 11 Physics
Score

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber : a. Pengutipan hanya untuk kepentingan pendidikan, penelitian , penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.

2. Dilarang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin dari Jurusan TIK Politeknik Negeri Jakarta

b. Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta

Gambar 4.7 Grafik perbandingan Konsumsi Daya 3DMark 11 Physics Score81
Gambar 4.8 Grafik perbandingan Hasil Nilai Cinebench R1581
Gambar 4.9 Grafik perbandingan Suhu Rata - Rata Cinebench R1582
Gambar 4.10 Grafik perbandingan Konsumsi Daya Cinebench R1582
Gambar 4.11 Grafik perbandingan Memory Score di Geekbench 483
Gambar 4.12 Grafik perbandingan Memory Latency di AIDA6484
Gambar 4.13 Grafik perbandingan Hasil Nilai Benchmate 7-Zip
Gambar 4.14 Grafik perbandingan Suhu Rata - Rata di Benchmate 7-Zip85
Gambar 4.15 Grafik perbandingan Konsumsi Daya di Benchmate 7-Zip
Gambar 4.16 Grafik perbandingan Hasil Nilai di Blender
Gambar 4.17 Grafik perbandingan Suhu Rata - Rata di Blender
Gambar 4.18 Grafik perbandingan Konsumsi Daya di Blender
Gambar 4.19 Grafik perbandingan Hasil Nilai di Adobe Premiere
Gambar 4.20 Grafik perbandingan Suhu Rata - Rata di Adobe Premiere
Gambar 4.21 Grafik perbandingan Konsumsi Daya di Adobe Premiere90
Gambar 4.22 Grafik perbandingan Hasil Nilai di Handbrake90
Gambar 4.23 Grafik perbandingan Suhu Rata - Rata di Handbrake91
Gambar 4.24 Grafik perbandingan Konsumsi Daya di Handbrake91
Gambar 4.25 Grafik perbandingan Hasil Nilai di 3DMark Sky Diver92
Gambar 4.26 Grafik perbandingan Suhu Maksimal di 3DMark Sky Diver93
Gambar 4.27 Grafik perbandingan Konsumsi Daya di 3DMark Sky Diver93

DAFTAR TABEL

Tabel 1. Pengujian Kestabilan CPU	71
Tabel 2. Pengujian Kestabilan Memori	71
Tabel 3. Hasil Pengujian CPU menggunakan 3DMark 11	72
Tabel 4. Hasil Pengujian CPU menggunakan Cinebench R15	72
Tabel 5. Hasil Pengujian Memori menggunakan Geekbench 4	73
Tabel 6. Hasil Pengujian Memori menggunakan AIDA 64	73
Tabel 7. Hasil Pengujian Gabungan menggunakan Benchmate 7-Zip	73
Tabel 8. Hasil Pengujian Gabungan menggunakan Blender	74
Tabel 9. Hasil Pengujian Gabungan menggunakan Adobe Premiere	74
Tabel 10. Hasil Pengujian Gabungan menggunakan Handbrake	75
Tabel 11. Hasil Pengujian Gabungan menggunakan 3DMark Sky Diver	75

POLITEKNIK daftar lampiran

Daftar Riwayat Hidup Penulis

Jurusan Teknik Informatika dan Komputer - Politeknik Negeri Jakarta

Dilarang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun

b. Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta

tanpa izin dari Jurusan TIK Politeknik Negeri Jakarta

© Hak Cipta milik Jurusan TIK Politeknik Negeri Jakarta

lak Cipta :

BAB I

PENDAHULUAN

1.1 Latar Belakang

Seiring dengan meningkatnya kebutuhan dalam produktivitas dan juga dampak dengan adanya *COVID-19* diseluruh dunia, akibatnya para produsen teknologi menaikkan harga komponen secara signifikan, hal ini juga di-perparah dengan permintaan pasar yang sangat tinggi, menurut analis (Gartner Inc, 2021) pada tahun 2020 pertumbuhan pasar komputer meningkat sebesar 4.8% dari tahun 2019 yang hanya 1.1% hal ini merupakan pertumbuhan pasar komputer semenjak 2010.

Dikarenakan keterbatasan dana banyak pengguna komputer memilih untuk tidak meng-upgrade atau menunggu sampai harga menjadi normal, menurut analis (Gartner Inc, 2021) diperkirakan harga dan pasokan untuk semikonduktor akan normal kembali pada pertengahan tahun 2022.

Overclocking bisa menjadi solusi bagi pengguna yang ingin memaksimalkan kinerja sistem komputernya ditengah situasi seperti saat ini, kata *Overclocking* atau *Overclock* diambil dari kata *Over* yang berarti lebih dan *Clock* adalah singkatan dari *Clockspeed* yang berarti *Overclocking* merupakan sebuat metode atau teknik untuk menjalankan komponen komputer dengan kecepatan yang lebih tinggi dari kecepatan standar yang sudah ditentukan pabrik-nya (Jagat Review, 2016).

Selain itu teknik *Overclocking* juga beberapa tahun ini berkembang pesat sehingga teknik yang biasanya digunakan hanya dengan menggunakan *BIOS* bisa digunakan melalui aplikasi sehingga memudahkan pengguna dalam melakukan *Overclocking*.

Penelitian mengenai *Overclocking* ini sudah cukup banyak dilakukan seperti penelitian untuk mengetahui efek durabilitas yang disebabkan oleh *overclocking* di prosesor Intel Core i5-4670K (Fahrizal, et al., 2016), penelitian mengenai kinerja saat melakukan enkripsi data menggunakan prosesor Intel Pentium G3258AE (Rahmaden, 2017), penelitian mengenai metode *Overclocking* yang berbeda-beda (Thomas & Shanmugasundaram, 2018), penelitian mengenai overclocking di prosesor Intel Core i5-2500K (Utama, et al., 2019), penelitian mengenai

1

Dilarang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun b. Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta tanpa izin dari Jurusan TIK Politeknik Negeri Jakarta

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :

a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :

a. Pengutipan hanya untuk kepentingan pendidikan, penelitian , penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.

Dilarang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun

tanpa izin dari Jurusan TIK Politeknik Negeri Jakarta

b. Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta

overclocking di prosesor Intel Core i7-2600K- (Lutfi & Prasetyo, 2016), ada juga penelitian yang memfokuskan tentang *overclocking* pada memori menggunakan *RAM* Galax *Hall of Fame* (Kharisma & Putro, 2019).

Penelitian-penelitian tersebut dilakukukan menggunakan *hardware* yang ditunjukkan untuk konsumen, ada juga yang melakukan Penelitian *overclocking* pada *server* dan berfokus pada efisiensi kinerja serta menimalisir konsumsi daya seperti penelitian mengenai cara meningkatkan efisiensi dengan *Overclocking* prosesor dan penskalaan frekuensi memori (Feihao, et al., 2018), dan penelitian *Overclocking* mengenai pendekatan hemat energi holistik untuk sistem prosesor dan memory (Feihao, et al., 2019).

Berdasarkan penelitian-penelitian yang dilakukan jarang sekali yang menggunakan penelitian dengan menggunakan software overclocking seperti yang dilakukan (Slameto & Rachman, 2020) dengan jurnalnya yang berjudul Pengaruh *Overclocking Processor* AMD Ryzen 5 Pada Rendering Video menggunakan Adobe After Effect.

Penelitian ini bertujuan sama dengan penelitian sebelum-sebelumnya yaitu melakukan analisis *Overclocking* dengan mencari peningkatan dari sistem yang mana paling seimbang dari kestabilan sistem, suhu dan yang terpenting juga konsumsi daya yang didapat.

1.2 Perumusan Masalah

Perumusan masalah yang terdapat pada Penelitian :

- a. Bagaimana cara melakukan Overclocking?
- b. Bagaimana performa kinerja sistem sebelum & setelah di Overclocking?
- c. Apa efek yang didapatkan setelah melakukan Overclocking?

1.3 Batasan Masalah

Dalam realisasi, Penelitian ini dibatasi dalam beberapa hal sebagai berikut:

a. Menggunakan Sistem Operasi Windows 10 21H1 sebagai sistem pengujian.

a. Pengutipan hanya

anpa izin dari Jurusan TIK Politeknik Negeri Jakarta

ilarang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun

Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta

. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

untuk kepentingan pendidikan, penelitian , penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.

- b. Spesifikasi sistem yang dipakai adalah: *Processor* AMD Ryzen 3 3100, *Motherboard* MSI B450 Pro VDH MAX, Memori *RAM* DDR4 V-Gen Tsunami 8GB 2666 Mhz
- c. Overclocking CPU menggunakan Ryzen Master Utility
- d. Overclocking Memori menggunakan konfigurasi dari Memory try-it di BIOS
- e. Kartu Grafis tidak di Overclock

1.4 Tujuan dan Manfaat

1.4.1 Tujuan

Tujuan dilakukannya Penelitian ini adalah untuk melihat seberapa besar performa sistem yang didapat dengan melakukan teknik *Overclocking* dan juga mengetahui seberapa besar peningkatan suhu dan konsumsi daya yang di dapat.

1.4.2 Manfaat

Manfaat dari Penelitian ini adalah untuk mengetahui konfigurasi yang pas antara peningkatan suhu,konsumsi daya dengan peningkatan performa yang di dapat.

1.5 Metode Penyelesaian Masalah

Penelitian ini dilakukan dengan melakukan implementasi dari aplikasi dan juga meneliti hubungan sebab akibat dari variabel yang ada untuk mendapatkan hasil yang akurat. Tahapan penelitian yang dilakukan adalah sebagai berikut:

1. Studi Literatur

Studi literatur dilakukan untuk mengumpulkan data dari buku, jurnal penelitian, wawancara dan jurnal prosiding konferensi tentang informasi yang terkait dengan masalah pada topik penelitian.

2. Perancangan & Implementasi Infrastruktur

Infrastruktur yang digunakan adalah komputer 1 unit dengan spesifikasi yang sudah ditentukan.

🔘 Hak Cipta milik Jurusan TIK Politeknik Negeri Jakarta

lak Cipta :

Dilarang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun

b. Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta

tanpa izin dari Jurusan TIK Politeknik Negeri Jakarta

3. Pengujian

Pengujian dilakukan dengan menggunakan Aplikasi Ryzen Master Utility dan BIOS sebagai pembanding, serta aplikasi yang sudah ditentukan bertujuan untuk mengukur kinerja sistem serta mengecek sistem.

4. Analisis Hasil Pengujian

Data yang didapat dari pengujian dicatat dan dilakukan analisis untuk mendapatkan kesimpulan dari penelitian yang dilakukan.

Penyusunan Laporan Penelitian 5.

Laporan penelitian dilakukan setelah seluruh penelitian selesai dengan mengikuti pedoman yang ditetapkan oleh panitia skripsi Jurusan Teknik Informatika dan Komputer. Pembuatan laporan penelitian akan dibimbing oleh dosen pembimbing dan juga pakar serta kegiatan pengerjaan didokumentasikan dalam bentuk foto, video, maupun media lain

POLITEKNIK NEGERI JAKARTA

5.1 Kesimpulan

2.

ak Cipta :

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :

- a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.

- b. Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta

Dilarang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun

tanpa izin dari Jurusan TIK Politeknik Negeri Jakarta

KESIMPULAN

Berdasarkan hasil pengujian yang telah dilakukan, kesimpulan yang didapat adalah:

- 1. penulis mengambil kesimpulan bahwa overclocking dapat meningkatkan performa kinerja sistem secara besar maupun kecil yang perlu diperhatikan adalah software yang digunakan CPU Bound, Memori Bound maupun GPU Bound, agar memaksimalkan efek yang dihasilkan dari overclocking.
 - Melakukan overclocking juga memiliki dampak yang signifikan terhadap suhu dan konsumsi daya, berdasarkan data yang didapatkan dari hasil analisis, rata-rata persentase kenaikan suhu menggunakan Pendingin bawaan dalam segala pengujian adalah 23.2% sedangkan menggunakan Pendingin tambahan mengalami penurunan dengan persentase 21.1% dengan persentase rata-rata konsumsi daya 17.6%.
 - Frekuensi tertinggi yang bisa diraih untuk CPU adalah 4.25 Ghz lebih dari itu sistem *restart*, suhu juga sangat berpengaruh semakin tinggi frekuensi maka semakin tinggi juga suhu yang dihasilkan, sedangkan untuk frekuensi tertinggi dari memori adalah 3333 Mhz lebih dari itu sistem tidak stabil perlu diperhatikan persentase kenaikan memori dari keadaan default sangat besar yaitu 38.3% lebih besar dari kenaikan frekuensi CPU yang hanya 8.9%.
- 4. Dari hasil data yang dianalis menurut penulis *setting* yang pas dan stabil untuk sehari-hari adalah skenario gabungan 4, dikarenakan voltase yang masih berada pada di 1.1V sehingga suhu tidak terlalu tinggi namun memberikan peningkatan yang lumayan.

🔘 Hak Cipta milik Jurusan TIK Politeknik Negeri Jakarta

lak Cipta :

5.2 Saran

dengan overclocking selanjutnya adalah :

pengujian overclocking.

- Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :
- a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.
- b. Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta

POLITEKNIK NEGERI JAKARTA

Penelitian ini dilakukan dengan kondisi perangkat keras yang terbatas sehingga

diperlukan penelitian lebih lanjut, adapun saran untuk penelitian yang berkaitan

1. Dilakukan penelitian lebih lanjut untuk melihat efek yang dihasilkan

2. Penelitian selanjutnya bisa menggunakan GPU sebagai fokus utama dalam

overclocking sistem untuk kegunaan berbasis Jaringan ataupun virtualisasi.

DAFTAR PUSTAKA

- Fahrizal, R., Alfanz, R. & Sakti, A., 2016. *Analysis of effect Overclocking durability* on Intel processor i5 4670K. Bandung, IEEE, p. 4.
- Feihao, W. et al., 2018. *Improve Energy Efficiency by Processor Overclocking and Memory Frequency Scaling*. Exeter, IEEE, p. 8.
- Feihao, W. et al., 2019. Holistic Energy Efficient Approach for Processor-Memory System. *Tsinghua Science and Technology*, 24(4), p. 16.

Gartner Inc, 2021. Gartner Says Global Chip Shortage Expected to Persist Until Second Quarter of 2022. [Online] Available at: <u>https://www.gartner.com/en/newsroom/press-releases/2021-05-12-gartner-says-global-chip-shortage-expected-to-persist-until-secondquarter-of-2022</u> [Accessed 29 Juli 2021].

Gartner Inc, 2021. Gartner Says Worldwide PC Shipments Grew 10.7% in Fourth Quarter of 2020 and 4.8% for the Year. [Online] Available at: <u>https://www.gartner.com/en/newsroom/press-releases/2021-01-11-gartner-says-worldwide-pc-shipments-grew-10-point-7-percent-in-the-fourth-quarter-of-2020-and-4-point-8-percent-for-the-year [Accessed 17 Mei 2021].</u>

- Jagat Review, 2015. *Mengenal Benchmark sintetis part 1 of 3: tool penting bagi overclocker.* [Online] Available at: <u>https://oc.jagatreview.com/2015/09/mengenal-benchmark-</u> <u>sintetis-part-1-of-3-tool-penting-bagi-overclocker/</u> [Accessed 17 Mei 2021].
- Jagat Review, 2016. Mengenal OC: Menjawab 10 Pertanyaan Dasar Mengenai Overclocking. [Online] Available at: <u>https://oc.jagatreview.com/2016/02/mengenal-oc-menjawab-10-pertanyaan-dasar-mengenai-overclocking-2016/</u> [Accessed 17 Mei 2021].
- Jagat Review, 2016. Synthetic Benchmark vs Real World Benchmark bagi Overclocker. [Online] Available at: <u>https://oc.jagatreview.com/2016/05/synthetic-benchmark-vsreal-world-benchmark-bagi-overclocker/</u> [Accessed 17 Mei 2021].
- Kharisma, R. S. & Putro, M. K., 2019. *Analysis of Overclock RAM Galax Hall of Fame for Daily Needs*. Yogyakarta, IEEE.
- Lutfi, M. & Prasetyo, H., 2016. Analisis Kinerja Overclock Processor Intel Core i7 2600K pada chipset motherboard P67. *Jurnal Transformasi*, 12(1), p. 7.

🔘 Hak Cipta milik Jurusan TIK Politeknik Negeri Jakarta

Hak Cipta : 1. Dilarang m

a. Pengutipan nany

- MSI, 2020. Saat Prosesor Baru AMD Ryzen 4000G Series Bertemu MSI Memory Try It! Analis Kinerja DRAM !! Dapatkan 4000+MHz hanya dengan beberapa klik !!!. [Online] Available at: <u>https://id.msi.com/blog/b550-memory-try-it</u> [Accessed Mei 17 2021].
- R., 2017. Analisis Efek Overclocking terhadap Enkripsi data dengan menggunakan Processor Intel G3258AE. *Repository Universitas AMIKOM Yogyakarta*, 11(4887), p. 7.
- Slameto, A. A. & Rachman, A. H., 2020. Pengaruh Overclocking Processor AMD Ryzen 5 Pada Rendering Video menggunakan Adobe After Effect. JURNAL INOVTEK POLBENG - SERI INFORMATIKA, 5(1), p. 16.

Thomas, D. & Shanmugasundaram, M., 2018. A survey on Different Overclocking Methods. Vellore, IEEE.

Utama, R. D., Juardi, D. & Heryana, N., 2019. Implementasi Overclocking pada Processor Intel Core i5-2500K untuk meningkatkan Kinerja Komputer. *JUSTINDO (Jurnal Sistem & Teknologi Informasi Indonesia)*, 5(1), p. 7.

POLITEKNIK NEGERI JAKARTA

. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

untuk kepentingan pendidikan, penelitian , penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.

Dilarang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun

tanpa izin dari Jurusan TIK Politeknik Negeri Jakarta

b. Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta

Penulis bernama Ockly RajabPratama lahir di Jakarta, 23 Oktober 1999. Penulis menyelesaikan sekolah dasar di SD Negeri 05 Tanah Baru Depok pada tahun 2011. Menyelesaikan pendidikan sekolah menengah pertama di SMP Negeri 131 Terbuka Jakarta Selatan pada tahun 2014 dan pendidikan sekolah menengah kejuruan di SMK Al-Muhajirin Depok pada tahun 2017. Hingga sampai

penulisan skripsi ini, penulis masih terdaftar sebagai mahasiswa aktif program Diploma 4 di Politeknik Negeri Jakarta.

POLITEKNIK NEGERI JAKARTA

lak Cipta :

- Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :
- a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penulisan laporan, penulisan kritik atau tinjauan suatu masalah.
- b. Pengutipan tidak merugikan kepentingan yang wajar Politeknik Negeri Jakarta
- Dilarang mengumukan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin dari Jurusan TIK Politeknik Negeri Jakarta