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Abstract: This paper proposes an optimal fuzzy proportional-integral-derivative (PID) controller
design based on ventional PID control and nonlinear factors. With the equivalence between fuzzy
logic controllers (FLCs) and conventional PID controllers, a ccnrenﬁonal PID controller design can
be rapidly transfmed into an equivalent FLC by defining the operating ranges of the input/output
of the controller. The proposed nonlinear factors can further tune the nonlinearity of the membership
functions (MFs) distributed in the operating ranges. In this manner, a fuzzy PID controller can be
developed with less parameters and optimized by using the genetic algorithm (GA). In addition,
the aforementioned equivalent FLC can act as one individual in the initial population of GA, and
Sigm'ﬁcantn enhances the GA efficiency. Simulation results demonstrate the feasibility of this
technique. This resulted in an optimal fuzzy PID controller design with only eight parameters with a
concise controller structure, and most importantly, the optimal fuzzy PID controller design is now
more systematic.

Keywaords: equivalence; optimal; fuzzy PID controller; genetic algorithm

1. Introduction

The well-known proportional-integral-derivative (PID) controllers are still widely employed
in industrial process control even though many kinds of control theories have been developed. The
popularity of a PID controller can be attributed to its good performance and functional simplicity. The
three-mode controller contains a proportional (P), an integral (I), and a derivative (D) term to make
a system yield a desirable response in settling time, steady-state error, and overshoot. An engineer
can efficiently tune the three gains through experience or some simple principles, such as the classical
tuning rules proposed by Ziegler-Nichols [1]. Moreover, a simplified Pl or PD controller is also popular
for a multitude of practical applications.

A fuzzy logic controller (FLC) is based on fuzzy rules and fuzzy inference. The fuzzy rules can
reflect human experience or knowledge, and exhibit nonlinearity to control more complex plants,
which can be linear or nonlinear. Like conventional PI or PD controllers, FLCs also have Pl-type or
PD-type controllers. Essentially, a FLC design includes the type of FLC, the number and shape of
membership functions (MFs), and the fuzzy mn [2]. The genetic algorithm (GA) is employed to
determine the optimal parameters of a system. Since the design techniques of conventional linear
PID controllers have matured, it is advantageous to use the GA to optimize fuzzy PID controller
design. Researchers have introduced an analytical design for an optimal fuzzy PID controller [3],
which has a simple structure, but uses complicated procedures. Another optimal fuzzy PID controller
combining a fuzzy Pl controller with a fuzzy D controller was proposed [4], but this device is actually
a conventional PID controller with an adaptive control capability with complicated analytic formulas.
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An optimal fuzzy PID controller can also be built by combining a fuzzy PI controller and a fuzzy PD
controller in parallelism [5] with optimal tuning of scaling factors and MFs. The conventional PID
controller can also be directly put in the optimal design for fuzzy controllers [6], where the PID control
is the master controller, and the fuzzy control is the slave control to enhance the master one.

The controller structure should be the primary consideration for a fuzzy PID controller design.
As for the fuzzy control rules, in principle, they should follow conventional PID control. Then the
problem of tuning the MFs in order to improve system performance must be solved [7]. The shape
of MFs can be defined by chromosome bits and optimized by the GA [8,9] to improve the system
responses, suich as speed and precision of control [9,10]. On the other hand, each fuzzy variable MF is
usually set to a symmetrical shape. The adjustment of a MF from symmetrical [11] to asymmetrical can
also obtain improvements in system performance [12]. Moreover, some researchers use scaling factors
to normalize the operating ranges and tune scaling factors to finish optimization [13]. In this paper, we
choose to tune the operating ranges, which are important parameters for defining the equivalent FLC
from a conventional P1D controller.

In recent decades, many evolutionary algorithms have been developed, such as the particle
swarm algorithm (PSO), cuckoo search (CS), and so on. Evolutionary programming (EP) claims that
the traditional GA will not only have a premature convergence, but may also be trapped in the local
optima. A fuzzy PID controller design using a novel PSO-EP based hybrid algorithm has been found
in [14]. Furthermore, it is shown that a FLC + EP based PID controller provides a more rapid response
than a FLC + GA based PID controller [15]. In this paper, we will still apply GA, and give each
optimized parameter its own crossover point in the GA process to enhance the GA’s efficiency.

As most optimal fuzzy PID C(nmller designs with complex structures or a large number of tuning
parameters, this study developed an optimal fuzzﬂ’ID controller with less parameters and a concise
controller structure. Based on our previous work, the equivalence between fuzzy PID controllers and
nnvenﬁ(mal PID controllers is shown in [16]. Nonlinear factors are further proposed to represent
the nonlinearity of the MFs distributed in the operating ranges. For each MF itself, it will exhibit
an asymmetrical shape. In the proposed t‘imal fuzzy PID controller, there will be only a total of
eight adjusted parameters. Moreover, if a conventional PID controller design can be obtained in
advance, an equivalent FLC in the initial GA design can be used and this can potentially speed up the
optimization process. Pelusi previously researched designing optimal control systems through GA
and neuro-fuzzy techniques [17-19], and the results can be utilized as a benchmark to compare with
the proposed design. Furthermore, the proposed optimal fuzzy PID controller is also applied to the
motor control system [20], and the simulation results indicate speed control with good performance
and the capability of disturbance rejection [21].

This study presents the optimal fuzzy PID controller design (Section 2), followed by the simulation
results of Matlab/Simulink for verifying the proposed design (Section 3). Finally, the concluding
remarks are discussed (Section 4).

2. The Proposed Optimal Fuzzy PID Controller Design

The conventional PID controllers have been widely applied in industrial applications. The
common equation is expressed as follows:

de(t)
dt

u(t) = er(r}+K;/e(r}dr+KD (1)

where the controller provides a proportional term, an integration term, and a derivative term. In the
next section, we will describe the proposed optimal fuzzy PID controller design.
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2.1. The Equivalent FLC from a Conventional PID Controller

For a conventional PID controller in Equation (1), the output u(t) and the three inputs e(t), [ e(t),
and é(t) can be thought of as fuzzy variables in the FLC design. It is assumed that the operating
ranges for u(t), e(t), [e(t), and e(t) are ORy = [—au, aul, ORe = [—ae, ae], OR; = [—a;, a;], and
OR,; = [—ay, ay], respectively. In this subsection, some important results from our previous work [16]
on the equivalence between fuzzy PID controllers and conventional PID controllers are excerpted to
clarify the parameter definitions and notations.

For input fuzzy variables e(t), [ e(t), and é(t), each variable is represented by equally-spaced
and triangular-shaped m fuzzy sets, as shown in Figure 1. As for the output fuzzy variable u(t), it is
fuzzified by 3m — 2 singleton MFs.

IE'] E{ m+1)/2 E'm {m+]} 2 1
U I T i T T 1 | M >4

9] ..... 0o e em ,,,,,,

e e(t) > f— j'e(r) )
—d, a —d, a
ID] D{Hl"’])ﬂ': Dm U] (3m-1)/ Uam—"
d] - o - dm u - 0 o Us,, o

e &) > e u(t) -
—d, a, —a, a,

Figure 1. Graphical definition of MFs for fuzzy variables, e(t), [ e(t), ¢(t), and u(t).

With the overall fuzzy rules represented by the sliced cube fuzzy associative memory (FAM), as
shown in Figure 2, and each fuzzy rule defined as:

IF e(t)is E; and /e(r] is jande(t)is Dy THENu(t)isU,l=i+j+k-2, (2)
and the crisp output u(t) of the corresponding equivalent fuzzy logic controller is given by:

rr,, a, de(t
u(t) = 5 / )t + g1 d(r), @)

which implies a linear PID controller with:

a a
Kp=2%, Ki==% and Kp==". 4
P=3, K=z an D=3, (€]

We can find that Equation (4) has no relation with m, and it is worth mentioning that the fuzzy
inference and defuzzification processes should be limited to some specific operations [16]. Moreover,
for the equivalent fuzzy PID Controller corresponding to a conventional PID controller, there are four
parameters [a,, a;, a4, a,] in all for tuning.
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Figure 2. Sliced cube fuzzy associative memory (FAM) representation of the knowledge base.
2.2. The Nonlinear Factor for Tuning MFs

In the previous subsection, the fuzzy sets representing input/output the fuzzy variables e(t),
Je(t), e(t), and u(t) are equally-spaced, which is one of the reasons the results show a linear FLC. To
exhibit the nonlinearity of a FLC, we proposed a nonlinear factor -y to tune MFs. Without losing its
generality, let us take fuzzy variables e(t) and u(t) as an example. To illustrate the concept of nonlinear
factor 7y, e(t) is supposed to have m = 7 fuzzy sets, and u(t) has 3m — 2 = 19 fuzzy singletons, as shown
in Figure 3. It is noted that the variable m should be an odd number. In this paper, we use py, k = 0, to
represent the center of fuzzy sets Ek+% or Uk+¥' The nonlinear factor -y is defined as:

B, —Py_

It can be observed that the nonlinear factor -y represents the center distance ratio of the MFs before
and after.

In Figure 3a, it is the linear case with nonlinear factor 7y = 1. Figure 3b shows the case of v < 1,
where the closer the MF is to the zero, the wider the MF will be. On the contrary, if y > 1, the closer MF
to the zero will have a narrower shape, as shown in Figure 3¢. With the definition of nonlinear factors,
each MF itself can exhibit an asymmetrical shape and influence the system response.

From Equation (4) in Section 2.1, we get four parameters for tuning a linear FLC. Adding the
nonlinear factor for each fuzzy variable in this subsection, there will be a total of eight parameters,
[@e, @ A, u, e, Vi Yar Tu), which need to be adjusted for an optimal fuzzy PID controller design.
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Figure 3. Different nonlinear factor for tuning MFs. (a) v = 1; (b) v < 1; and (c) 7 > 1.

2.3. The Efficient Genetic Algorithm

The GA is employed to find the optimal parameter set for a fuzzy PID controller. Basically, the
GA includes some major components, such as encoding schemes, fimess evaluations, parent selection,
crossover operators, and a mutation operator. This study applied binary coding and adopted the
integrated absolute error (IAE) as the performance index [22], shown in Equation (6):

IAE = i|e[n]|. (6)
i=1

The fitness value will be the inverse value of the performance index, i.e., the smaller absolute sum
of errors will obtain a larger fitness value.

In this paper, we hope to enhance the GA efficiency, and discuss the crossover operation in GA
computation. In some GA codes, the bits of different parameters will be concatenated into a large
long string of bits. Afterwards, the crossover operation was done with only one crossover point.
This will simplify the programming considerably, but may reduce GA efficiency due to the possible
damage to good genes. In the proposed improved scheme, each parameter has its own crossover point,
as illustrated in Figure 4. In this manner, good genes will not be easily destroyed by the crossover
operation. Moreover, we will increase genetic diversity by enlarging the mutation rate. Simulation
results show an efficient GA for optimal fuzzy PID controller design.
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Figure 4. Crossover operation: (a) all parameters; and (b) single parameter.

3. Simulation Results

This section evaluates the performance of the proposed optimal fuzzy PID controller by
considering a two-order plant and motor control systems. The simulation is verified by use of
Matlab/Simulation.

Simulation 1: A Two-Order Plant

A two-order controlled plant is shown below with transfer function [19]:

2

= 7
2 +12s 424 @)

G(s)

First, the unit feedback control structure is adopted, as shown in Figure 5. A preliminary

conventional PID controller design with Kp = 50, K = 250, and Kp = 1.5 can be obtained through

some basic traditional techniques. Experiments to verify the proposed design approach can be seen in
the following section.
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Figure 5. The unit feedback control structure: (a) PID control; and (b) optimal fuzzy PID control.

Subsequently, we built the equivalent FLC for the above conventional PID controller design
through the procedure shown below, which will satisfy Equation (4).

OR, is set as [—a,, a,] = [—1.33,1.33], which is the range for e(t).
OR,, is setas [—ay, a,] = [—199.5,199.5] to satisfy Kp = 50.

OR; is setas [—a;, a;] = [—0.266,0.266] to satisfy K; = 250.

OR, is set as [—ay, ag) = [—44.33,44.33] to satisfy Kp = 1.5.

L

The parameter m is set as 5, resulting in 5 fuzzy sets for each input variable of the FLC. Figure 6
shows the settings of all the MFs in the Matlab environment. The linearity of the equivalent fuzzy
PID controller can be verified by the control surface view shown in Figure 7, which is similar to the
plan surface shown in [23]. The resulting equivalent fuzzy PID controller has almost the same system
response as the conventional PID controller.

With the conventional PID controller design and the corresponding equivalent FLC, we finally
have a basic understanding about the operating ranges of fuzzy 1/0 variables for a FLC. We can
then add additional nonlinear factors and enlarge the operating ranges to find the optimal fuzzy PID
controller through GA.

For the GA optimization, we use an 11-bit binary coding for each variable, and each generation
contains 20 individuals. The search domains are confined to0 < a, < 10,0 < a; < 50,0 < a4 < 100,
0 < ay <5000 and 0.01 < Yy igu) < 7.

Moreover, the mutation rate is set as 0.1, and the elitism is applied to keep the best two individuals
across generations. It is required to initialize a population with randomly generated individuals and
evaluate the fitness value of each individual for the first step of GA. In this stage, our first attempt is
taking the above equivalent FLC design, [a,, a;, a4, @y, Ae, Ai, Mg, Au] =[1.33,0.266, 44.33,199.5, 1,
1, 1, 1], as one individual in the population of the first generation. Figure 8 shows the performance
of GAs across generations, where the optimal design with initial equivalent FLC may yield faster
convergence with higher quality than the optimal design without initial equivalent FLC.
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Figure 8. Performance of GAs across generations: (a) with initial equivalent FLC; and (b) without

initial equivalent FLC.
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The step responses with the conventional PID controller (Kp = 50, K; = 250, Kp = 1.5) and
the proposed optimal fuzzy PID controller (with initial equivalent FLC) are shown in Figure 9. The

resulting eight optimized parameters are shown in Table 1. Furthermore, Table 2 summarizes the

response performance, including the rise time (7Tr), the settling time (13), the percentage overshoot
(P.O.), and the steady-state error (E,), of Pelusi's GNFC optimized controller [19] and the proposed
optimal fuzzy PID controller. Pelusi has provided many kinds of controllers, such as the genetic fuzzy
controller (GFC), the neuro fuzzy controller (NFC), and the genetic neuro fuzzy controller (GNFC), but
the GNFC has the best performance. Compared with Pelusi’s design, the proposed optimal FPID has

smaller Tr and Ts, but a very small overshoot occurred at peak time t = 0.08 s with amplitude 1.0173,
as shown in Figure 9. On the other hand, Pelusi’s GNFC controller belongs to a PD-type FLC, so Ey

cannot be eliminated.

System output
T T T T T |
—PID
The proposed optimal FPID
121 1
1k

g 0.8 1
=
£
-

E 0.6 1
<

0.4 |

0.2 1

0 1

. . . . . |

o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

Figure 9. The step responses: (blue) the conventional PID controller; and (red) the proposed optimal
fuzzy PID controller.

Table 1. The eight optimized parameters.

Optimized Operating Ranges Optimized Nonlinear Factors
de aj a4 Au e Ti Td Yu
5.3053 26.3556 99 4626 3009.3 4.1275 5.5227 0.8344 0.2872

Table 2. Response performance of different controllers.

Controller T (s) 10-90% Ts(s) £2% P.O. (%) Eg,
Pelusi’'s GNFC [19] 0.153 0.276 0 0917
The proposed optimal FPID 0.047 0.059 1.73 0

Figure 10 shows the MFs of the fuzzy 1/0 variables in the proposed optimal fuzzy PID controller,

and the control surface view under [ e(t) = 26.3556 is shown in Figure 11.
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Figure 10. Membership functions for fuzzy variables: (a) e(t); (b) ['e(t); (¢) e(t); and (d) u(#) in Matlab.

Figure 11. The control surface view of the proposed optimal fuzzy PID controller ( [e(t) = 26.3556).

Simulation 2: DC Motor Speed Control

High-performance motor drives are very important in many industrial applications. Based on the
design procedure in Simulation 1, a separately excited dc motor with the physical parameters listed in
Table 3 is used as the controlled plant [20], and Figure 12 shows the constructed model in Simulink.

Table 3. DC motor parameters [20].

Parameter/Specification Value Unit
R, (Armature resistance) 1 Ohm
L, (Armature inductance) 0.5 H
I, (Rotor inertia) 0.01 Kg-m?
Ky (Back EMF constant) 0.01 Volt-s/rad
K; (Torque constant) 0.01 N-m/A
K 7 (Mechanical damping factor) 0.1 N-m-s/rad

Rated speed

1200 rp.m
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Figure 12. The block diagram of the DC motor.

This is a speed control problem with the desired speed at 1200 rpm [20]. The control structure is
shown in Figure 13 for both the PID controller and the proposed optimal fuzzy PID controller. The
resulting speed responses of the initial conventional PID controller design with Kp = 50, K; = 60, and
Kp = 3, and the proposed optimal fuzzy PID controller are shown in Figure 14. The search domains of

the operating ranges for this case are confined to 0 < a, < 20,000, 0 < a; < 50,000, 0 < a; < 200,000,

0 < a, < 5,000,000, and 0.01 < 7,1, < 7.

L.; |—'T'- |

>
" OC Motor 1

Inegratar Gairt
Add
N

Derivativel Gain3

DC motor
output

Step

Load torque 7L
Speed [—4
DC Motor

Integrater
Fuzzy Logic
Controller
durdt

Desivative:

Figure 13. The control system of the PID controller and the proposed optimal fuzzy PID controller.

DC motor speed
h : T 1

1200 /
1000 - f —— Desired motor speed 1

/ ——FID
—— The proposed optimal FPID

Motor speed (rad/s)
@
2
-1

0
1] 0.5 1 15 2 25
Time (s)

Figure 14. The motor speed control of the conventional PID controller and the proposed optimal fuzzy
PID controller.

The resulting eight optimized parameters are shown in Table 4, and Table 5 summarizes some
response parameters of Singh’s optimized fuzzy-GA controller [20] and the proposed optimal fuzzy
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PID controller. It shows that the proposed design has smaller Tr and T5 than Singh'’s design. Finally,
Figure 15 shows all the resulting MFs of the fuzzy 1 /O variables.

Table 4. The eight optimized parameters.

Optimized Operating Ranges Optimized Nonlinear Factors
e a; g Ty Te Vi Td Tu
5061.1 12,946 122,030 3,556,400 2.7357 0.8036 0.6253 0.1661

Table 5. Response performance of different controllers.

Controller Tr (s) 10-90% Ts(s) +2% P.O. (%)
Singh’s Fuzzy GA controller [20] 0.1 0.121 5.8466
The proposed optimal FPID 0.044 0.054 223
[—— [ T [
= ‘ ;
\L'!X
&
e . e —
- o ol | —
= =] —
(=) (&)
S e e . 1o [
X :
4 : :
- ‘ :
Cuvent Cuaent Vet 1 urcton (dch n MF 13 it
- ' e —
o= an i = @
e [ = =
(2] (d)

Figure 15. Membership functions for fuzzy variables: (a) e(t); (b) [e(t); (c) e(t); and (d) u(t) in Matlab.

Simulation 3: DC Motor Speed Control with Load Disturbance

To further verify the feasibility and disturbance rejection capability of the proposed design, a
DC motor speed control example with load disturbance [21] is adopted. Table 6 shows the DC motor
parameters, and Figures 16 and 17 illustrate the desired speed command and load disturbance at
t =3 s, respectively.

Table 6. DC motor parameters [21].

Parameter/Specification Value Unit
R (Armature resistance) 2.25 Ohm
L, (Armature inductance) 4.65 x 1072 H
I+ (Rotor inertia) 7x 1072 Kg-m2
K}, (Back EMF constant) 1.1 Volt-s/rad
K; (Torque constant) 11 N-m/A

Ky (Mechanical damping factor) 2% 1072 N-m-s/rad
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Desired motor speed
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Figure 16. Desired motor speed.

Load torque (applied att = 3s)

4.5

3.5

Load torque (N*m)

2.5

5 . 1 1
0 1 2 3 4 5 B
Time (s)

Figure 17. Load torque as disturbance.

In this case, the sample-and-hold unit and the zero-order hold unit, which can be used to model
A/D (analog-to-digital) and D/ A (digital-to-analog) converters, are added to make a discretized FLC,
as shown in Figure 18. [t must be noted that the gain (K) in the “discrete-time integrator” and “discrete
derivative” is set as 1 [16]. The system input and the resulting responses are shown in Figure 19, with
sampling period s set as 0.1 ms. The system responses in Figure 19 include the initial conventional PID
controller design (Kp = 0.42, Kj = 25.127, Kp = 0.012), and the proposed optimal fuzzy PID controller
design. Furthermore, since we cannot obtain the response waveform of Al-Maliki's design [21], we
run a similar response to Al-Maliki's design by the proposed FPID.

Table 7 shows the eight optimized parameters of the proposed FPID design. The search domains
of the operating ranges are confined to 0 <a, < 20,000, 0 <a; < 50,000, 0 <a; < 200,000,

0 < ay < 5,000,000, and 0.01 < %y, 4,) < 7. Then the performance comparison between Al-Maliki’s
Fuzzy PID with KF (Kalman Filter) [21] and the proposed optimal FPID is summarized in Table 8.
Simulation results demonstrate that the proposed optimal FPID has smaller Tr and 15 than Al-Maliki's
design, but has a larger overshoot. Furthermore, the proposed design has good performance in
disturbance rejection.
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Figure 18. The proposed FLC-controlled system in discrete form.
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Figure 19. The motor speed input and system responses.
Table 7. The eight optimized parameters.
Optimized Operating Ranges Optimized Nonlinear Factors
e a; g T e i Td Tu
The proposed 11,412 33464 183980 3,251,100 65110 59331 04719 25169
optimal FPID
The proposed FPID
with a similar 1000 137 117,000 264180 23145 21590 59060  3.1692
response to
Al-Maliki’s results
Table 8. Response performance of different controllers.
Controller Tr (s) 10-90% Ts(s) 2% P.O. (%)
Al-Maliki’s FLC-PID with KF [21] ~0.15 0.257 0.5
The proposed optimal FPID 0.0409 0.0516 1.38
The proposed FPID with a similar 014 0254 0

response to Al-Maliki’s results
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Finally, Figure 20 shows all the resulting MFs of the fuzzy 1/O variables of the proposed optimal
FPID, and the control surface view under [ e(t) = 33464 is shown in Figure 21.
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Figure 21. The control surface view of the proposed optimal fuzzy PID controller ( [ e(t) = 3346.4).

There is another main reason for us to run a system response which is similar to Al-Maliki’s
design [21], as shown in Figure 19. As we also hope to compare the responses of the controller outputs,
which will indicate the power consumption of the implemented controllers, and this is very important
to help us understand the transient behaviors of the system. For a separately excited DC motor, the
speed is controlled by varying the source voltage to armature. Figure 22 shows the controller outputs
of the proposed optimal FPID and the proposed FPID with similar response to Al-Maliki’s design. The
controller output of the proposed optimal FPID has a higher peak than Al-Maliki's design.
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The controller output
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Figure 22. The controller outputs.

To summarize of the above simulation examples, the proposed optimal fuzzy PID controller
has quicker responses with smaller rising time and settling time. However, we still cannot claim
that the proposed optimal FPID has outperformed other methods. In order to compare it with other
approaches, we used the same IAE performance index, shown in Equation (6), but it is not practical
to only consider the error signal without considering the energy or the power consumption of the
controller output. The proposedfgptimal FPID design features a simple controller structure and a
straightforward design approach based on conventional PID control and only eight nonlinear factors.
Table 9 shows comparisons with the number of tuning parameters for different controllers.

Table 9. Number of tuning parameters for different controllers.

Model Name Number of Tuning Parameters
Pelusi’s Fuzzy PD [19] 69
Singh's Fuzzy GA database [20] 21
Qo ; . 20
Al-Maliki's FLC-PID with KF [21] (FLC-PD:10 & FLC-PI:10)
The proposed optimal FPID 8

4. Conclusion

Based on the equivalence between fuzzy PID controllers and conventional PID controllers, this
paper proposed an optimal fuzzy PID controller design with each fuzzy variable’s MFs tuned by a
nonlinear factor. Firstly, for a controlled plant, Ofg can make a preliminary conventional PID controller
design by some traditional techniques. Then the conventional PID controller design can be transformed
into an equivalent FLC with four parameters defining the operating ranges of the [/0s. Subsequently,
for each fuzzy I/0O variable, one nonlinear factor is used for tuning the nonlinearity of MFs. Thus,
there will be a total of eight parameters needed to be optimized by GA for an optimal fuzzy PID
C(mfmn'. To enhance the GA efficiency, each parameter must be given a crossover point. Finally,
we set the aforementioned equivalent FLC to be one individual in the first generation of GA. This
can yield quick and global convergence. In f we also found that in some simulations it made
no significant difference if we did not take the equivalent FLC to act as one individual in the initial
population of GA. This implies that the GA programming in this paper is really efficient. In conclusion,
the proposed design approach makes an optimal fuzzy PID controller design more straightforward,
and the controller structure more concise. This is quite advantageous for designers because they will
have a clearer concept about the operating ranges of fuzzy 1/0 variables. As a result, we can now
simply and appropriately increase the searching space for the optimal fuzzy PID controller design.
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